Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Pediatr ; 252: 146-153.e2, 2023 01.
Article in English | MEDLINE | ID: mdl-35944723

ABSTRACT

OBJECTIVE: The objective of the study was to evaluate the relationship between a panel of candidate plasma biomarkers and (1) death or severe brain injury on magnetic resonance imaging (MRI) and (2) dysfunctional cerebral pressure autoregulation as a measure of evolving encephalopathy. STUDY DESIGN: Neonates with moderate-to-severe hypoxic-ischemic encephalopathy (HIE) at 2 level IV neonatal intensive care units were enrolled into this observational study. Patients were treated with therapeutic hypothermia (TH) and monitored with continuous blood pressure monitoring and near-infrared spectroscopy. Cerebral pressure autoregulation was measured by the hemoglobin volume phase (HVP) index; a higher HVP index indicates poorer autoregulation. Serial blood samples were collected during TH and assayed for Tau, glial fibrillary acidic protein, and neurogranin. MRIs were assessed using National Institutes of Child Health and Human Development scores. The relationships between the candidate biomarkers and (1) death or severe brain injury on MRI (defined as a National Institutes of Child Health and Human Development score of ≥ 2B) and (2) autoregulation were evaluated using bivariate and adjusted logistic regression models. RESULTS: Sixty-two patients were included. Elevated Tau levels on days 2-3 of TH were associated with death or severe injury on MRI (aOR: 1.06, 95% CI: 1.03-1.09; aOR: 1.04, 95% CI: 1.01-1.06, respectively). Higher Tau was also associated with poorer autoregulation (higher HVP index) on the same day (P = .022). CONCLUSIONS: Elevated plasma levels of Tau are associated with death or severe brain injury by MRI and dysfunctional cerebral autoregulation in neonates with HIE. Larger-scale validation of Tau as a biomarker of brain injury in neonates with HIE is warranted.


Subject(s)
Brain Injuries , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Infant, Newborn , Child , Humans , Hypoxia-Ischemia, Brain/pathology , Magnetic Resonance Imaging/methods , Biomarkers
2.
Dev Neurosci ; 44(4-5): 363-372, 2022.
Article in English | MEDLINE | ID: mdl-35100588

ABSTRACT

Identifying the hemodynamic range that best supports cerebral perfusion using near infrared spectroscopy (NIRS) autoregulation monitoring is a potential physiologic marker for neonatal hypoxic-ischemic encephalopathy (HIE) during therapeutic hypothermia. However, an optimal autoregulation monitoring algorithm has not been identified for neonatal clinical medicine. We tested whether the hemoglobin volume phase (HVP), hemoglobin volume (HVx), and pressure passivity index (PPI) identify changes in autoregulation that are associated with brain injury on MRI or death. The HVP measures the phase difference between a NIRS metric of cerebral blood volume, the total hemoglobin (THb), and mean arterial blood pressure (MAP) at the frequency of maximum coherence. The HVx is the correlation coefficient between MAP and THb. The PPI is the percentage of coherent MAP-DHb (difference between oxygenated and deoxygenated hemoglobin, a marker of cerebral blood flow) epochs in a chosen time period. Neonates cooled for HIE were prospectively enrolled in an observational study in two neonatal intensive care units. In analyses adjusted for study site and encephalopathy level, all indices detected relationships between poor autoregulation in the first 6 h after rewarming with a higher injury score on MRI. Only HVx and PPI during hypothermia and the PPI during rewarming identified autoregulatory dysfunction associated with a poor outcome independent of study site and encephalopathy level. Our findings suggest that the accuracy of mathematical autoregulation algorithms in detecting the risk of brain injury or death may depend on temperature and postnatal age. Extending autoregulation monitoring beyond the standard 72 h of therapeutic hypothermia may serve as a method to provide personalized care by assessing the need for and efficacy of future therapies after the hypothermia treatment phase.


Subject(s)
Brain Injuries , Hypothermia, Induced , Hypothermia , Hypoxia-Ischemia, Brain , Brain Injuries/therapy , Cerebrovascular Circulation/physiology , Hemoglobins , Homeostasis/physiology , Humans , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/diagnosis , Hypoxia-Ischemia, Brain/therapy , Infant, Newborn
3.
Pediatr Res ; 91(1): 171-177, 2022 01.
Article in English | MEDLINE | ID: mdl-33654284

ABSTRACT

BACKGROUND: Previous studies have described an association between preterm birth and maturation of the autonomic nervous system (ANS); however, this may be impacted by multiple factors, including prematurity-related complications. Our aim was to evaluate for the effect of prematurity-related morbidity on ANS development in preterm infants in the NICU. METHODS: We compared time and frequency domains of heart rate variability (HRV) as a measure of ANS tone in 56 preterm infants from 2 NICUs (28 from each). One cohort was from a high-morbidity regional referral NICU, the other from a community-based inborn NICU with low prematurity-related morbidity. Propensity score matching was used to balance the groups by a 1:1 nearest neighbor design. ANS tone was analyzed. RESULTS: The two cohorts showed parallel maturational trajectory of the alpha 1 time-domain metric, with the cohort from the high-morbidity NICU having lower autonomic tone. The maturational trajectories between the two cohorts differed in all other time-domain metrics (alpha 2, RMS1, RMS2). There was no difference between groups by frequency-domain metrics. CONCLUSIONS: Prematurity-associated morbidities correlate with autonomic development in premature infants and may have a greater impact on the extrauterine maturation of this system than birth gestational age. IMPACT: Autonomic nervous system development measured by time-domain metrics of heart rate variability correlate with morbidities associated with premature birth. This study builds upon our previously published work that showed that development of autonomic tone was not impacted by gestational age at birth. This study adds to our understanding of autonomic nervous system development in a preterm extrauterine environment. Our study suggests that gestational age at birth may have less impact on autonomic nervous system development than previously thought.


Subject(s)
Autonomic Nervous System/growth & development , Infant, Premature , Morbidity , Female , Gestational Age , Heart Rate , Humans , Infant, Newborn , Intensive Care Units, Neonatal , Male , Propensity Score
4.
Pediatr Res ; 89(4): 863-868, 2021 03.
Article in English | MEDLINE | ID: mdl-32396923

ABSTRACT

BACKGROUND: In premature infants, we investigated whether the duration of extrauterine development influenced autonomic nervous system (ANS) maturation. METHODS: We performed a longitudinal cohort study of ANS maturation in preterm infants. Eligibility included birth gestational age (GA) < 37 weeks, NICU admission, and expected survival. The cohort was divided into three birth GA groups: Group 1 (≤29 weeks), Group 2 (30-33 weeks), and Group 3 (≥34 weeks). ECG data were recorded weekly and analyzed for sympathetic and parasympathetic tone using heart rate variability (HRV). Quantile regression modeled the slope of ANS maturation among the groups by postnatal age to term-equivalent age (TEA) (≥37 weeks). RESULTS: One hundred infants, median (Q1-Q3) birth GA of 31.9 (28.7-33.9) weeks, were enrolled: Group 1 (n = 35); Group 2 (n = 40); and Group 3 (n = 25). Earlier birth GA was associated with lower sympathetic and parasympathetic tone. However, the rate of autonomic maturation was similar, and at TEA there was no difference in HRV metrics across the three groups. The majority of infants (91%) did not experience significant neonatal morbidities. CONCLUSION: Premature infants with low prematurity-related systemic morbidity have maturational trajectories of ANS development that are comparable across a wide range of ex-utero durations regardless of birth GA. IMPACT: Heart rate variability can evaluate the maturation of the autonomic nervous system. Metrics of both the sympathetic and parasympathetic nervous system show maturation in the premature extrauterine milieu. The autonomic nervous system in preterm infants shows comparable maturation across a wide range of birth gestational ages. Preterm newborns with low medical morbidity have maturation of their autonomic nervous system while in the NICU. Modern NICU advances appear to support autonomic development in the preterm infant.


Subject(s)
Autonomic Nervous System/growth & development , Infant, Premature/physiology , Autonomic Nervous System/physiopathology , Electrocardiography , Female , Gestational Age , Heart Rate , Humans , Infant, Extremely Premature , Infant, Newborn , Intensive Care Units, Neonatal , Intensive Care, Neonatal , Longitudinal Studies , Male , Pregnancy , Prospective Studies , Regression Analysis
5.
Prenat Diagn ; 40(7): 813-824, 2020 06.
Article in English | MEDLINE | ID: mdl-32274806

ABSTRACT

OBJECTIVE: To establish whether fetal cerebral vasoreactivity (CVRO2 ), following maternal hyperoxia, is predicted by fetal cerebral and uteroplacental Doppler pulsatility indices (PI) at baseline, fetal pulmonary vasoreactivity to oxygen (PVRO2 ), gestational age (GA), or sex. METHODS: Pulsatility index of middle (MCA), anterior (ACA), posterior cerebral (PCA), umbilical (UA), uterine (UtA), and branch of the pulmonary arteries (PA) were obtained, by ultrasound, before (baseline), during (hyperoxia) and after 15 minutes of maternal administration of 8 L/min of 100% oxygen, through a non-rebreathing face mask, in normal singleton pregnancies within 20 to 38 weeks' gestation. CVRO2 was defined as changes greater than zero in z score of PI of the cerebral arteries from baseline to hyperoxia. Logistic modeling was applied to identify CVRO2 predictors. RESULTS: A total of 97 pregnancies were eligible. In the overall population, median z scores of PI of MCA, ACA, and PCA did not differ between study phases. Based on the logistic model, baseline z scores for cerebral PI and GA were the best predictors of CVRO2 . CONCLUSIONS: In low-risk pregnancies, fetal CVRO2 to hyperoxia does not occur uniformly but depends on cerebral PI and GA at baseline. These findings may provide useful reference points when oxygen is administered in high-risk pregnancies.


Subject(s)
Cerebrovascular Disorders/etiology , Fetal Diseases/etiology , Hyperoxia/complications , Acute Disease , Adult , Blood Flow Velocity , Cerebral Arteries/diagnostic imaging , Cerebral Arteries/physiopathology , Cerebrovascular Disorders/congenital , Cerebrovascular Disorders/physiopathology , Cross-Sectional Studies , Female , Fetus/blood supply , Gestational Age , Humans , Hyperoxia/physiopathology , Pregnancy , Pregnancy Complications/physiopathology , Pulsatile Flow , Ultrasonography, Prenatal , Vasodilation/physiology , Young Adult
6.
J Pediatr ; 196: 38-44, 2018 05.
Article in English | MEDLINE | ID: mdl-29519539

ABSTRACT

OBJECTIVE: To evaluate whether infants with hypoxic-ischemic encephalopathy and evidence of autonomic dysfunction have aberrant physiological responses to care events that could contribute to evolving brain injury. STUDY DESIGN: Continuous tracings of heart rate (HR), blood pressure (BP), cerebral near infrared spectroscopy, and video electroencephalogram data were recorded from newborn infants with hypoxic-ischemic encephalopathy who were treated with hypothermia. Videos between 16 and 24 hours of age identified 99 distinct care events, including stimulating events (diaper changes, painful procedures), and vagal stimuli (endotracheal tube manipulations, pupil examinations). Pre-event HR variability was used to stratify patients into groups with impaired versus intact autonomic nervous system (ANS) function. Postevent physiological responses were compared between groups with the nearest mean classification approach. RESULTS: Infants with intact ANS had increases in HR/BP after stimulating events, whereas those with impaired ANS showed no change or decreased HR/BP. With vagal stimuli, the HR decreased in infants with intact ANS but changed minimally in those with impaired ANS. A pupil examination in infants with an intact ANS led to a stable or increased BP, whereas the BP decreased in the group with an impaired ANS. Near infrared spectroscopy measures of cerebral blood flow/blood volume increased after diaper changes in infants with an impaired ANS, but were stable or decreased in those with an intact ANS. CONCLUSION: HR variability metrics identified infants with impaired ANS function at risk for maladaptive responses to care events. These data support the potential use of HR variability as a real-time, continuous physiological biomarker to guide neuroprotective care in high-risk newborns.


Subject(s)
Autonomic Nervous System Diseases/complications , Autonomic Nervous System Diseases/diagnosis , Brain Injuries/etiology , Hypothermia, Induced , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/diagnosis , Blood Pressure/physiology , Cerebrovascular Circulation , Electrocardiography , Electroencephalography , Female , Heart Rate/physiology , Hemodynamics , Humans , Infant, Newborn , Magnetic Resonance Imaging , Male , Video Recording
7.
Am J Perinatol ; 35(11): 1079-1086, 2018 09.
Article in English | MEDLINE | ID: mdl-29609189

ABSTRACT

BACKGROUND: Necrotizing enterocolitis (NEC) is a complication of prematurity with a high mortality rate. Currently, there are no reliable biomarkers capable of identifying infants at risk for developing NEC. We sought to determine the autonomic nervous system antecedents of NEC in premature infants, using heart rate variability (HRV). MATERIALS AND METHODS: HRV was quantified by retrieving archived electrocardiogram (EKG) data from 30 premature infants from 4 days prior, through 4 days after, the clinical NEC diagnosis. HRV metrics were compared with those on the diagnosis day using the receiver operating characteristic (ROC) analysis. RESULTS: HRV metrics showed a depression of autonomic tone that preceded the clinical NEC diagnosis by 2 days, and which recovered to baseline by 2 days after diagnosis (area under the curve [AUC] < 0.7). The pattern of HRV change was significantly associated with the clinical severity of NEC (stage II vs. stage III). CONCLUSION: Our studies suggest that readily accessible metrics of autonomic depression might expedite the diagnosis of NEC and its severity in a clinically meaningful manner. Clearly, these studies need to be extended prospectively to determine the diagnostic utility of this approach.


Subject(s)
Autonomic Nervous System/physiopathology , Enterocolitis, Necrotizing/diagnosis , Infant, Premature, Diseases/diagnosis , Biomarkers , Case-Control Studies , Electrocardiography , Female , Heart Rate , Humans , Infant, Newborn , Infant, Premature , Logistic Models , Male , ROC Curve
8.
Pediatr Res ; 82(3): 438-443, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28376079

ABSTRACT

BackgroundDecreased heart rate variability (HRV) is a measure of autonomic dysfunction and brain injury in newborns with hypoxic ischemic encephalopathy (HIE). This study aimed to characterize the relationship between HRV and brain injury pattern using magnetic resonance imaging (MRI) in newborns with HIE undergoing therapeutic hypothermia.MethodsHRV metrics were quantified in the time domain (αS, αL, and root mean square at short (RMSS) and long (RMSL) timescales) and frequency domain (relative low-(LF) and high-frequency (HF) power) over 24-27 h of life. The brain injury pattern shown by MRI was classified as no injury, pure cortical/white matter injury, mixed watershed/mild basal ganglia injury, predominant basal ganglia or global injury, and death. HRV metrics were compared across brain injury pattern groups using a random-effects mixed model.ResultsData from 74 infants were analyzed. Brain injury pattern was significantly associated with the degree of HRV suppression. Specifically, negative associations were observed between the pattern of brain injury and RMSS (estimate -0.224, SE 0.082, P=0.006), RMSL (estimate -0.189, SE 0.082, P=0.021), and LF power (estimate -0.044, SE 0.016, P=0.006).ConclusionDegree of HRV depression is related to the pattern of brain injury. HRV monitoring may provide insights into the pattern of brain injury at the bedside.


Subject(s)
Heart Rate , Hypoxia-Ischemia, Brain/physiopathology , Female , Humans , Infant, Newborn , Male
9.
Pediatr Crit Care Med ; 18(4): 349-354, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28198757

ABSTRACT

OBJECTIVE: To determine whether measures of heart rate variability are related to changes in temperature during rewarming after therapeutic hypothermia for hypoxic-ischemic encephalopathy. DESIGN: Prospective observational study. SETTING: Level 4 neonatal ICU in a free-standing academic children's hospital. PATIENTS: Forty-four infants with moderate to severe hypoxic-ischemic encephalopathy treated with therapeutic hypothermia. INTERVENTIONS: Continuous electrocardiogram data from 2 hours prior to rewarming through 2 hours after completion of rewarming (up to 10 hr) were analyzed. MEASUREMENTS AND MAIN RESULTS: Median beat-to-beat interval and measures of heart rate variability were quantified including beat-to-beat interval SD, low and high frequency relative spectral power, detrended fluctuation analysis short and long α exponents (αS and αL), and root mean square short and long time scales. The relationships between heart rate variability measures and esophageal/axillary temperatures were evaluated. Heart rate variability measures low frequency, αS, and root mean square short and long time scales were negatively associated, whereas αL was positively associated, with temperature (p < 0.01). These findings signify an overall decrease in heart rate variability as temperature increased toward normothermia. CONCLUSIONS: Measures of heart rate variability are temperature dependent in the range of therapeutic hypothermia to normothermia. Core body temperature needs to be considered when evaluating heart rate variability metrics as potential physiologic biomarkers of illness severity in hypoxic-ischemic encephalopathy infants undergoing therapeutic hypothermia.


Subject(s)
Heart Rate/physiology , Hypothermia, Induced , Hypoxia-Ischemia, Brain/therapy , Rewarming , Body Temperature , Electrocardiography , Female , Humans , Hypoxia-Ischemia, Brain/physiopathology , Infant, Newborn , Intensive Care Units, Neonatal , Male , Prospective Studies , Treatment Outcome
10.
Am J Perinatol ; 34(9): 874-878, 2017 07.
Article in English | MEDLINE | ID: mdl-28282664

ABSTRACT

Background Patent ductus arteriosus (PDA) is a common complication of prematurity and a risk factor for poor outcome. Infants undergoing surgical PDA ligation are at highest risk for neurodevelopmental injury. Autonomic dysfunction has been described in premature infants with PDA. Aim To interrogate the autonomic nervous system by analysis of advanced heart rate variability (HRV) metrics before and after surgical closure of the PDA. Study Design Prospective, observational study. Subjects Twenty-seven infants born before 28 weeks' gestation were included in this study. Methods Continuous electrocardiogram data were sampled at a rate of 125 Hz for a total of 6 hours before and 6 hours after 30 hours of surgical closure. HRV was determined by detrended fluctuation analysis to calculate the short and long root mean square (RMSL and RMSS) and α components at two time scales (long and short). Results Gestational age (GA) was positively associated with RMSL, RMSS, and αS and was negatively associated with αL. There was no difference between RMSs, RMSL, αS, or αL before and after surgery; however, median heart rate was lower after surgery (p < 0.01). Conclusion Advancing GA is highly associated with increasing HRV; however, surgical ligation does not affect HRV in the postoperative period.


Subject(s)
Ductus Arteriosus, Patent/surgery , Heart Rate , Infant, Extremely Low Birth Weight , Infant, Extremely Premature , Autonomic Nervous System/physiopathology , Ductus Arteriosus, Patent/diagnostic imaging , Echocardiography , Electrocardiography , Female , Gestational Age , Humans , Infant, Newborn , Ligation/adverse effects , Male , Prospective Studies
11.
Pediatr Res ; 79(6): 929-33, 2016 06.
Article in English | MEDLINE | ID: mdl-26859365

ABSTRACT

BACKGROUND: Cerebral pressure passivity (CPP) in sick newborns can be detected by evaluating coupling between mean arterial pressure (MAP) and cerebral blood flow measured by near infra-red spectroscopy hemoglobin difference (HbD). However, continuous MAP monitoring requires invasive catheterization with its inherent risks. We tested whether heart rate (HR) could serve as a reliable surrogate for MAP in the detection of CPP in sick newborns. METHODS: Continuous measurements of MAP, HR, and HbD were made and partitioned into 10-min epochs. Spectral coherence (COH) was computed between MAP and HbD (COHMAP-HbD) to detect CPP, between HR and HbD (COHHR-HbD) for comparison, and between MAP and HR (COHMAP-HR) to quantify baroreflex function (BRF). The agreement between COHMAP-HbD and COHHR-HbD was assessed using ROC analysis. RESULTS: We found poor agreement between COHMAP-HbD and COHHR-HbD in left hemisphere (area under the ROC curve (AUC) 0.68) and right hemisphere (AUC 0.71). Baroreflex failure (COHMAP-HR not significant) was present in 79% of epochs. Confining comparison to epochs with intact BRF showed an AUC of 0.85 for both hemispheres. CONCLUSIONS: In these sick newborns, HR was an unreliable surrogate for MAP required for the detection of CPP. This is likely due to the prevalence of BRF failure in these infants.


Subject(s)
Baroreflex , Blood Pressure , Heart Rate , Area Under Curve , Arterial Pressure , Biomarkers , Catheters , Cerebrovascular Circulation , Hemodynamics , Hemoglobins/analysis , Humans , Infant, Newborn , Infant, Premature/physiology , Monitoring, Physiologic , Pressure , ROC Curve , Sensitivity and Specificity , Spectrophotometry
12.
J Neurophysiol ; 114(2): 818-24, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26063779

ABSTRACT

Impaired cerebral autoregulation may contribute to secondary injury in newborns with hypoxic-ischemic encephalopathy (HIE). Continuous, noninvasive assessment of cerebral pressure autoregulation can be achieved with bedside near-infrared spectroscopy (NIRS) and systemic mean arterial blood pressure (MAP) monitoring. This study aimed to evaluate whether impaired cerebral autoregulation measured by NIRS-MAP monitoring during therapeutic hypothermia and rewarming relates to outcome in 36 newborns with HIE. Spectral coherence analysis between NIRS and MAP was used to quantify changes in the duration [pressure passivity index (PPI)] and magnitude (gain) of cerebral autoregulatory impairment. Higher PPI in both cerebral hemispheres and gain in the right hemisphere were associated with neonatal adverse outcomes [death or detectable brain injury by magnetic resonance imaging (MRI), P < 0.001]. NIRS-MAP monitoring of cerebral autoregulation can provide an ongoing physiological biomarker that may help direct care in perinatal brain injury.


Subject(s)
Brain/physiopathology , Cryotherapy , Hypoxia-Ischemia, Brain/physiopathology , Hypoxia-Ischemia, Brain/therapy , Blood Pressure , Brain/pathology , Female , Functional Laterality , Humans , Hypoxia-Ischemia, Brain/mortality , Hypoxia-Ischemia, Brain/pathology , Infant, Newborn , Magnetic Resonance Imaging , Male , Prospective Studies , Spectroscopy, Near-Infrared
14.
J Child Neurol ; 35(8): 517-525, 2020 07.
Article in English | MEDLINE | ID: mdl-32306827

ABSTRACT

The objective was to examine the discriminatory ability of electroencephalogram (EEG) delta power in neonates with hypoxic-ischemic encephalopathy (HIE) with well-defined outcomes. Prolonged continuous EEG recordings from term neonates with HIE during therapeutic hypothermia enrolled in a prospective observational study were examined. Adverse outcome was defined as death or severe brain injury by magnetic resonance imaging (MRI); favorable outcome was defined as normal or mild injury by MRI. Neonates were stratified by Sarnat grade of encephalopathy at admission. EEG was partitioned into 10-minute nonoverlapping artifact- and seizure-free epochs. Delta power was calculated and compared between the groups using receiver operating characteristic (ROC) analyses and Wilcoxon rank-sum tests. An area under the ROC curve >0.7 with P <.05 was considered a significant separation between groups. The favorable outcome group (n = 67) had higher delta power than the adverse outcome group (n = 28) across the majority of time periods from 9 to 90 hours of life. Delta power discriminated outcome groups for neonates with moderate encephalopathy (63 favorable and 14 adverse outcome) earlier in cooling (9-42 hours of life) than neonates with severe encephalopathy (21-42 hours of life). Outcome groups were differentiated after 81 hours of life in neonates with moderate and severe encephalopathy. Delta power can distinguish cooled HIE neonates with adverse outcome independently of the encephalopathy grade at presentation. Delta power may be a real-time continuous biomarker of evolving encephalopathy and brain injury/death in neonates with HIE.


Subject(s)
Brain/physiopathology , Delta Rhythm/physiology , Hypoxia-Ischemia, Brain/diagnosis , Brain/diagnostic imaging , Electroencephalography , Female , Humans , Hypothermia, Induced , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/physiopathology , Hypoxia-Ischemia, Brain/therapy , Infant, Newborn , Magnetic Resonance Imaging , Male , Prognosis
15.
J Perinatol ; 40(5): 806-811, 2020 05.
Article in English | MEDLINE | ID: mdl-32157219

ABSTRACT

OBJECTIVE: To determine whether ventilator-related fluctuations in cerebral blood volume (CBV) are associated with cerebral pressure passivity. STUDY DESIGN: In a prospective study of newborns undergoing positive-pressure ventilation, we calculated coherence between continuous mean arterial pressure (MAP) and cerebral near-infrared spectroscopy hemoglobin difference (HbD). Significant HbD-MAP coherence indicated cerebral pressure passivity. CBV changes were measured as the spectral power of total hemoglobin (SHbT) at the ventilator frequency. A regression model tested whether SHbT predicts cerebral pressure passivity and/or death/brain injury, controlling for birth gestational age and other factors. RESULTS: We studied 68 subjects with prematurity (n = 19), congenital heart disease (n = 11), and hypoxic-ischemic encephalopathy (n = 38). SHbT, sedative use, and pCO2 were positively associated, and circulating hemoglobin negatively associated, with cerebral pressure passivity (p < 0.001), which was positively associated with brain injury (p < 0.001). CONCLUSION: In sick newborns, ventilator-related CBV fluctuations may predispose to cerebral pressure passivity, which may predispose to an adverse neonatal outcome.


Subject(s)
Critical Illness , Infant, Premature , Blood Pressure , Cerebrovascular Circulation , Homeostasis , Humans , Infant , Infant, Newborn , Prospective Studies
16.
Sci Rep ; 9(1): 11020, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31363124

ABSTRACT

Delivery of the newborn occurs either vaginally or via caesarean section. It is not known whether the mode of delivery and exposure to labor affects early autonomic nervous system (ANS) function, as measured by heart rate variability (HRV), or cortical electroencephalogram (EEG) activity. The objective of the study was to determine if autonomic function in newborns differs by mode of delivery. Simultaneous recording of EEG and electrocardiogram were collected in low-risk term newborns at <72 hours of age to measure HRV, the asymmetry index, and EEG power. Newborns were compared by delivery type: vaginal delivery (VD), cesarean section (CS) after labor (L-CS), or elective CS (E-CS). Quantile Regression controlled for gestational age, postnatal age, and percent active states. One hundred and eighteen newborns were studied at 25.2 (11.4) hours of age. Sixty-two (52.5%) were born by VD, 22 by L-CS (18.6%), and 34 by E-CS (28.8%). HRV metrics didn't differ by delivery mode. Asymmetry index was higher in L-CS compared to VD and E-CS (P = 0.03). On EEG, L-CS newborns showed lower relative gamma power compared to VD and E-CS (P = 0.005). The study found that overall ANS tone is not altered by mode of delivery in low-risk term newborns.


Subject(s)
Autonomic Nervous System/physiology , Brain Stem/physiology , Cerebral Cortex/physiology , Delivery, Obstetric/adverse effects , Infant, Newborn/physiology , Nervous System Diseases/epidemiology , Adult , Brain Waves , Delivery, Obstetric/methods , Female , Humans , Male
17.
Future Med Chem ; 9(16): 1913-1929, 2017 10.
Article in English | MEDLINE | ID: mdl-29028366

ABSTRACT

AIM: A new series of pyrazolo[1,5-c]pyrimidines were synthesized by different hybridization strategies. METHODOLOGY: All structures were confirmed by IR, 1H, 13C, 1H-13C heteronuclear multiple-quantum correlation (HMQC) spectra and microanalysis. They were evaluated for their in vitro antileishmanial activity against miltefosine and amphotericin B deoxycholate as reference drugs. RESULTS: The most active compounds 2a and 9a demonstrated superior potencies to miltefosine by ten- and six-fold, respectively, for the promastigote form, and by 5.5-fold for the amastigote form. Their binding scenario to Leishmania major pteridine reductase was rationalized by docking experiments. In addition, all compounds were safe for the experimental animals orally up to 150 mg/kg and parenterally up to 75 mg/kg. CONCLUSION: This study provides novel chemotype class for antileishmanial activity. [Formula: see text].


Subject(s)
Antiprotozoal Agents/chemical synthesis , Leishmania major/drug effects , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Amphotericin B/pharmacology , Antiprotozoal Agents/pharmacology , Binding Sites , Deoxycholic Acid/pharmacology , Drug Combinations , Drug Design , Humans , Molecular Docking Simulation/methods , Molecular Structure , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Protein Binding , Pyrazoles/pharmacology , Structure-Activity Relationship
18.
J Neurosci Methods ; 270: 76-84, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27291356

ABSTRACT

BACKGROUND: Electroencephalogram (EEG) signals are often contaminated by the electrocardiogram (ECG) interference, which affects quantitative characterization of EEG. NEW METHOD: We propose null-coherence, a frequency-based approach, to attenuate the ECG interference in EEG using simultaneously recorded ECG as a reference signal. After validating the proposed approach using numerically simulated data, we apply this approach to EEG recorded from six newborns receiving therapeutic hypothermia for neonatal encephalopathy. We compare our approach with an independent component analysis (ICA), a previously proposed approach to attenuate ECG artifacts in the EEG signal. The power spectrum and the cortico-cortical connectivity of the ECG attenuated EEG was compared against the power spectrum and the cortico-cortical connectivity of the raw EEG. RESULTS: The null-coherence approach attenuated the ECG contamination without leaving any residual of the ECG in the EEG. COMPARISON WITH EXISTING METHOD: We show that the null-coherence approach performs better than ICA in attenuating the ECG contamination without enhancing cortico-cortical connectivity. CONCLUSION: Our analysis suggests that using ICA to remove ECG contamination from the EEG suffers from redistribution problems, whereas the null-coherence approach does not. We show that both the null-coherence and ICA approaches attenuate the ECG contamination. However, the EEG obtained after ICA cleaning displayed higher cortico-cortical connectivity compared with that obtained using the null-coherence approach. This suggests that null-coherence is superior to ICA in attenuating the ECG interference in EEG for cortico-cortical connectivity analysis.


Subject(s)
Artifacts , Cerebral Cortex/physiology , Electrocardiography , Electroencephalography/methods , Brain Diseases/physiopathology , Brain Diseases/therapy , Cerebral Cortex/physiopathology , Computer Simulation , Female , Humans , Hypothermia, Induced , Infant, Newborn , Male , Neural Pathways/physiology , Neural Pathways/physiopathology
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 4001-4004, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28269162

ABSTRACT

Volume conduction is a major problem in spatial-temporal electroencephalogram (EEG) signals. We propose a frequency dependent subtraction approach to address the volume conduction problem in EEG signals. We validate the proposed approach using simulated data and discuss the application of the approach to the EEG data recorded from three sick infants. The frequency dependent subtraction mitigated the common signal better than the traditionally used re-referencing the EEG signals to the global average of EEG from all electrodes. Furthermore, the frequency-based approach also attenuated the other interfering signals such as noise from power line and mechanical ventilators used to support patients.


Subject(s)
Electroencephalography/methods , Signal Processing, Computer-Assisted , Humans , Infant
20.
Early Hum Dev ; 90(12): 893-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25463838

ABSTRACT

OBJECTIVE: Cerebral mapping of central autonomic nervous system (ANS)(1) function in mature animals and humans lateralizes sympathetic and parasympathetic influence predominantly to the right and left cerebral hemispheres, respectively. Spectral analysis of heart rate variability (HRV)(2) is an established measure of ANS function. We examined whether such lateralization is present in the term newborn. METHODS: We retrospectively reviewed records of infants >36 weeks of gestation diagnosed with hypoxic ischemic encephalopathy (HIE).(3) We included infants with neonatal EEG and regional injury on brain MRI, which was scored using a schema. We extracted ECG signals from the EEG recording, but excluded periods of electrographic seizure activity to eliminate possible seizure influence on HRV. HRV was evaluated by spectral analysis in the high frequency (HF(4); 0.3-1 Hz) and low frequency (LF(5); 0.05-0.25 Hz) ranges, and the LF/HF ratio was examined to assess sympatho-vagal balance. The relation between the injured brain regions and HRV was studied using multiple linear regression models. RESULTS: We studied 40 neonates with HIE. Injury to the right cerebral cortex (p=0.009) and right cerebellum (p=0.041) predicted a decreased LF/HF ratio. Injury to the left cerebral cortex (p=0.035) and left cerebellum (p=0.041) was associated with an increased LF/HF ratio. The association between brain injury location and the individual LF or HF spectral powers of brain injury did not reach significance. CONCLUSIONS: Our data suggest that a functional lateralization for cerebral autonomic influence is established by term gestation.


Subject(s)
Autonomic Nervous System/physiopathology , Brain Injuries/physiopathology , Hypoxia-Ischemia, Brain/physiopathology , Brain Mapping , Electrocardiography , Female , Functional Laterality , Heart Rate , Humans , Infant, Newborn , Male , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL