Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Brief Bioinform ; 22(2): 1451-1465, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33611340

ABSTRACT

This study aimed to identify significant gene expression profiles of the human lung epithelial cells caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. We performed a comparative genomic analysis to show genomic observations between SARS-CoV and SARS-CoV-2. A phylogenetic tree has been carried for genomic analysis that confirmed the genomic variance between SARS-CoV and SARS-CoV-2. Transcriptomic analyses have been performed for SARS-CoV-2 infection responses and pulmonary arterial hypertension (PAH) patients' lungs as a number of patients have been identified who faced PAH after being diagnosed with coronavirus disease 2019 (COVID-19). Gene expression profiling showed significant expression levels for SARS-CoV-2 infection responses to human lung epithelial cells and PAH lungs as well. Differentially expressed genes identification and integration showed concordant genes (SAA2, S100A9, S100A8, SAA1, S100A12 and EDN1) for both SARS-CoV-2 and PAH samples, including S100A9 and S100A8 genes that showed significant interaction in the protein-protein interactions network. Extensive analyses of gene ontology and signaling pathways identification provided evidence of inflammatory responses regarding SARS-CoV-2 infections. The altered signaling and ontology pathways that have emerged from this research may influence the development of effective drugs, especially for the people with preexisting conditions. Identification of regulatory biomolecules revealed the presence of active promoter gene of SARS-CoV-2 in Transferrin-micro Ribonucleic acid (TF-miRNA) co-regulatory network. Predictive drug analyses provided concordant drug compounds that are associated with SARS-CoV-2 infection responses and PAH lung samples, and these compounds showed significant immune response against the RNA viruses like SARS-CoV-2, which is beneficial in therapeutic development in the COVID-19 pandemic.


Subject(s)
COVID-19/complications , Hypertension, Pulmonary/complications , SARS-CoV-2/isolation & purification , Algorithms , Biomarkers/metabolism , COVID-19/metabolism , COVID-19/virology , Gene Ontology , Humans , Hypertension, Pulmonary/metabolism , Information Storage and Retrieval , MicroRNAs/metabolism , Phylogeny , Protein Interaction Maps , Transcription Factors/metabolism
2.
BMC Med Inform Decis Mak ; 20(1): 236, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32948169

ABSTRACT

BACKGROUND: Today's healthcare organizations want to implement secure and quality healthcare software as cyber-security is a significant risk factor for healthcare data. Considering security requirements during trustworthy healthcare software development process is an essential part of the quality software development. There are several Security Requirements Engineering (SRE) methodologies, framework, process, standards available today. Unfortunately, there is still a necessity to improve these security requirements engineering approaches. Determining the most suitable security requirements engineering method for trustworthy healthcare software development is a challenging process. This study is aimed to present security experts' perspective on the relative importance of the criteria for selecting effective SRE method by utilizing the multi-criteria decision making methods. METHODS: The study was planned and conducted to identify the most appropriate SRE approach for quality and trustworthy software development based on the security expert's knowledge and experience. The hierarchical model was evaluated by using fuzzy TOPSIS model. Effective SRE selection criteria were compared in pairs. 25 security experts were asked to response the pairwise criteria comparison form. RESULTS: The impact of the recognized selection criteria for effective security requirements engineering approaches has been evaluated quantitatively. For each of the 25 participants, comparison matrixes were formed based on the scores of their responses in the form. The consistency ratios (CR) were found to be smaller than 10% (CR = 9.1% < 10%). According to pairwise comparisons result; with a 0.842 closeness coefficient (Ci), STORE methodology is the most effective security requirements engineering approach for trustworthy healthcare software development. CONCLUSIONS: The findings of this research study demonstrate various factors in the decision-making process for the selection of a reliable method for security requirements engineering. This is a significant study that uses multi-criteria decision-making tools, specifically fuzzy TOPSIS, which used to evaluate different SRE methods for secure and trustworthy healthcare application development.


Subject(s)
Delivery of Health Care , Fuzzy Logic , Software , Health Facilities , Humans
3.
IEEE Trans Nanobioscience ; 23(1): 42-50, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37256816

ABSTRACT

This manuscript introduces a highly sensitive dual-core photonic crystal fiber (PCF) based multi-analyte surface plasmon resonance (SPR) sensor, possessing the ability to detect multiple analytes at once. A chemically stable thin plasmonic substance of gold (Au) layer, holding a thickness of 30 nm, is employed to the outer portion of the stated design that manifests a negative real permittivity. Moreover, an ultra-thin film of aluminum oxide (Al2O3) , having a thickness of 10 nm, is inserted into the exterior of the gold film to calibrate the resonance wavelength as well as magnify the coupling strength. The performance of the sensor is rigorously explored employing the finite element method (FEM), where numerical investigation confirms that the intended sensor model exhibits a peak amplitude sensitivity (AS) of 2606 RIU-1 , as well as a highest wavelength sensitivity (WS) of 20,000 nm/RIU. The achieved outcomes affirm that the sensor design can be conceivably applied in numerous biological; as well as biochemical analyte refractive index (RI) detection to realize the relevant significant applications in the visible to near-infrared (VNIR) region of 0.5 to [Formula: see text].


Subject(s)
Aluminum Oxide , Surface Plasmon Resonance , Gold , Vibration
4.
Sci Rep ; 14(1): 12892, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839785

ABSTRACT

Antimicrobials are molecules that prevent the formation of microorganisms such as bacteria, viruses, fungi, and parasites. The necessity to detect antimicrobial peptides (AMPs) using machine learning and deep learning arises from the need for efficiency to accelerate the discovery of AMPs, and contribute to developing effective antimicrobial therapies, especially in the face of increasing antibiotic resistance. This study introduced AMP-RNNpro based on Recurrent Neural Network (RNN), an innovative model for detecting AMPs, which was designed with eight feature encoding methods that are selected according to four criteria: amino acid compositional, grouped amino acid compositional, autocorrelation, and pseudo-amino acid compositional to represent the protein sequences for efficient identification of AMPs. In our framework, two-stage predictions have been conducted. Initially, this study analyzed 33 models on these feature extractions. Then, we selected the best six models from these models using rigorous performance metrics. In the second stage, probabilistic features have been generated from the selected six models in each feature encoding and they are aggregated to be fed into our final meta-model called AMP-RNNpro. This study also introduced 20 features with SHAP, which are crucial in the drug development fields, where we discover AAC, ASDC, and CKSAAGP features are highly impactful for detection and drug discovery. Our proposed framework, AMP-RNNpro excels in the identification of novel Amps with 97.15% accuracy, 96.48% sensitivity, and 97.87% specificity. We built a user-friendly website for demonstrating the accurate prediction of AMPs based on the proposed approach which can be accessed at http://13.126.159.30/ .


Subject(s)
Antimicrobial Peptides , Neural Networks, Computer , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Machine Learning , Anti-Infective Agents/pharmacology , Deep Learning
5.
Heliyon ; 10(17): e37280, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296124

ABSTRACT

Background and aims: The single nucleotide polymorphisms (SNPs) in SLC30A8 gene have been recognized as contributing to type 2 diabetes (T2D) susceptibility and colorectal cancer. This study aims to predict the structural stability, and functional impacts on variations in non-synonymous SNPs (nsSNPs) in the human SLC30A8 gene using various computational techniques. Materials and methods: Several in silico tools, including SIFT, Predict-SNP, SNPs&GO, MAPP, SNAP2, PhD-SNP, PANTHER, PolyPhen-1,PolyPhen-2, I-Mutant 2.0, and MUpro, have been used in our study. Results: After data analysis, out of 336 missenses, the eight nsSNPs, namely R138Q, I141N, W136G, I349N, L303R, E140A, W306C, and L308Q, were discovered by ConSurf to be in highly conserved regions, which could affect the stability of their proteins. Project HOPE determines any significant molecular effects on the structure and function of eight mutated proteins and the three-dimensional (3D) structures of these proteins. The two pharmacologically significant compounds, Luzonoid B and Roseoside demonstrate strong binding affinity to the mutant proteins, and they are more efficient in inhibiting them than the typical SLC30A8 protein using Autodock Vina and Chimera. Increased binding affinity to mutant SLC30A8 proteins has been determined not to influence drug resistance. Ultimately, the Kaplan-Meier plotter study revealed that alterations in SLC30A8 gene expression notably affect the survival rates of patients with various cancer types. Conclusion: Finally, the study found eight highly deleterious missense nsSNPs in the SLC30A8 gene that can be helpful for further proteomic and genomic studies for T2D and colorectal cancer diagnosis. These findings also pave the way for personalized treatments using biomarkers and more effective healthcare strategies.

6.
Bioengineering (Basel) ; 10(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37508885

ABSTRACT

Mental health is a major concern for all classes of people, but especially physicians in the present world. A challenging task is to identify the significant risk factors that are responsible for depression among physicians. To address this issue, the study aimed to build a machine learning-based predictive model that will be capable of predicting depression levels and finding associated risk factors. A raw dataset was collected to conduct this study and preprocessed as necessary. Then, the dataset was divided into 10 sub-datasets to determine the best possible set of attributes to predict depression. Seven different classification algorithms, KNN, DT, LGBM, GB, RF, ETC, and StackDPP, were applied to all the sub-datasets. StackDPP is a stacking-based ensemble classifier, which is proposed in this study. It was found that StackDPP outperformed on all the datasets. The findings indicate that the StackDPP with the sub-dataset with all the attributes gained the highest accuracy (0.962581), and the top 20 attributes were enough to gain 0.96129 accuracy by StackDPP, which was close to the performance of the dataset with all the attributes. In addition, risk factors were analyzed in this study to reveal the most significant risk factors that are responsible for depression among physicians. The findings of the study indicate that the proposed model is highly capable of predicting the level of depression, along with finding the most significant risk factors. The study will enable mental health professionals and psychiatrists to decide on treatment and therapy for physicians by analyzing the depression level and finding the most significant risk factors.

7.
IEEE Rev Biomed Eng ; 16: 22-37, 2023.
Article in English | MEDLINE | ID: mdl-36197867

ABSTRACT

This century has introduced very deadly, dangerous, and infectious diseases to humankind such as the influenza virus, Ebola virus, Zika virus, and the most infectious SARS-CoV-2 commonly known as COVID-19 and have caused epidemics and pandemics across the globe. For some of these diseases, proper medications, and vaccinations are missing and the early detection of these viruses will be critical to saving the patients. And even the vaccines are available for COVID-19, the new variants of COVID-19 such as Delta, and Omicron are spreading at large. The available virus detection techniques take a long time, are costly, and complex and some of them generates false negative or false positive that might cost patients their lives. The biosensor technique is one of the best qualified to address this difficult challenge. In this systematic review, we have summarized recent advancements in biosensor-based detection of these pandemic viruses including COVID-19. Biosensors are emerging as efficient and economical analytical diagnostic instruments for early-stage illness detection. They are highly suitable for applications related to healthcare, wearable electronics, safety, environment, military, and agriculture. We strongly believe that these insights will aid in the study and development of a new generation of adaptable virus biosensors for fellow researchers.


Subject(s)
Biosensing Techniques , COVID-19 , Viruses , Zika Virus Infection , Zika Virus , Humans , SARS-CoV-2 , Pandemics
8.
Biomed Res Int ; 2022: 8078259, 2022.
Article in English | MEDLINE | ID: mdl-35528173

ABSTRACT

Coronaviruses are a family of viruses that infect mammals and birds. Coronaviruses cause infections of the respiratory system in humans, which can be minor or fatal. A comparative transcriptomic analysis has been performed to establish essential profiles of the gene expression of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) linked to cystic fibrosis (CF). Transcriptomic studies have been carried out in relation to SARS-CoV-2 since a number of people have been diagnosed with CF. The recognition of differentially expressed genes demonstrated 8 concordant genes shared between the SARS-CoV-2 and CF. Extensive gene ontology analysis and the discovery of pathway enrichment demonstrated SARS-CoV-2 response to CF. The gene ontological terms and pathway enrichment mechanisms derived from this research may affect the production of successful drugs, especially for the people with the following disorder. Identification of TF-miRNA association network reveals the interconnection between TF genes and miRNAs, which may be effective to reveal the other influenced disease that occurs for SARS-CoV-2 to CF. The enrichment of pathways reveals SARS-CoV-2-associated CF mostly engaged with the type of innate immune system, Toll-like receptor signaling pathway, pantothenate and CoA biosynthesis, allograft rejection, graft-versus-host disease, intestinal immune network for IgA production, mineral absorption, autoimmune thyroid disease, legionellosis, viral myocarditis, inflammatory bowel disease (IBD), etc. The drug compound identification demonstrates that the drug targets of IMIQUIMOD and raloxifene are the most significant with the significant hub DEGs.


Subject(s)
COVID-19 , Cystic Fibrosis , COVID-19/genetics , COVID-19/physiopathology , Cystic Fibrosis/genetics , Cystic Fibrosis/physiopathology , Gene Expression Profiling , Gene Ontology , Humans , MicroRNAs/genetics , SARS-CoV-2 , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL