Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Pediatr Gastroenterol Nutr ; 76(6): 822-829, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36913717

ABSTRACT

OBJECTIVES: Increased gut permeability and gut inflammation have been linked to the development of type 1 diabetes. Little is known on whether and how intake of different foods is linked to these mechanisms in infancy. We investigated whether the amount of breast milk and intake of other foods are associated with gut inflammation marker concentrations and permeability. METHODS: Seventy-three infants were followed from birth to 12 months of age. Their diet was assessed with structured questionnaires and 3-day weighed food records at the age of 3, 6, 9, and 12 months. Gut permeability was assessed with the lactulose/mannitol test and fecal calprotectin and human ß-defensin-2 (HBD-2) concentrations were analyzed from stool samples at the age of 3, 6, 9, and 12 months. The associations between foods and gut inflammation marker concentrations and permeability were analyzed using generalized estimating equations. RESULTS: Gut permeability and gut inflammation marker concentrations decreased during the first year of life. Intake of hydrolyzed infant formula ( P = 0.003) and intake of fruits and juices ( P = 0.001) were associated with lower intestinal permeability. Intake of fruits and juices ( P < 0.001), vegetables ( P < 0.001), and oats ( P = 0.003) were associated with lower concentrations of HBD-2. Higher intake of breast milk was associated with higher fecal calprotectin concentrations ( P < 0.001), while intake of fruits and juices ( P < 0.001), vegetables ( P < 0.001), and potatoes ( P = 0.007) were associated with lower calprotectin concentrations. CONCLUSIONS: Higher intake of breast milk may contribute to higher calprotectin concentration, whereas several complementary foods may decrease gut permeability and concentrations of calprotectin and HBD-2 in infant gut.


Subject(s)
Breast Feeding , Milk, Human , Female , Infant , Humans , Infant Formula , Permeability , Inflammation , Leukocyte L1 Antigen Complex , Infant Food
2.
Pediatr Allergy Immunol ; 33(1): e13659, 2022 01.
Article in English | MEDLINE | ID: mdl-34472138

ABSTRACT

BACKGROUND: Consumption of unprocessed cow's milk has been associated with a lower risk of childhood asthma and/or atopy. Not much is known about differently processed milk products. We aimed to study the association between the consumption of differently processed milk products and asthma risk in a Finnish birth cohort. METHODS: We included 3053 children from the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Nutrition Study. Asthma and its subtypes were assessed at the age of 5 years, and food consumption by food records, at the age of 3 and 6 months and 1, 2, 3, 4, and 5 years. We used conventional and processing (heat treatment and homogenization)-based classifications for milk products. The data were analyzed using a joint model for longitudinal and time-to-event data. RESULTS: At the age of 5 years, 184 (6.0%) children had asthma, of whom 101 (54.9%) were atopic, 75 (40.8%) were nonatopic, and eight (4.3%) could not be categorized. Consumption of infant formulas [adjusted hazard ratio (95% confidence intervals) 1.15 (1.07, 1.23), p < .001] and strongly heat-treated milk products [1.06 (1.01, 1.10), p = .01] was associated with the risk of all asthma. Consumption of all cow's milk products [1.09 (1.03, 1.15), p = .003], nonfermented milk products [1.08 (1.02, 1.14), p = .008], infant formulas [1.23 (1.13, 1.34), p < .001], and strongly heat-treated milk products [1.08 (1.02, 1.15), p = .006] was associated with nonatopic asthma risk. All these associations remained statistically significant after multiple testing correction. CONCLUSIONS: High consumption of infant formula and other strongly heat-treated milk products may be associated with the development of asthma.


Subject(s)
Asthma , Hypersensitivity, Immediate , Milk Hypersensitivity , Allergens , Animals , Asthma/epidemiology , Asthma/etiology , Asthma/prevention & control , Cattle , Female , Humans , Infant , Infant Formula/adverse effects , Milk/adverse effects
3.
Br J Nutr ; 124(2): 173-180, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32102698

ABSTRACT

Several prospective studies have shown an association between cows' milk consumption and the risk of islet autoimmunity and/or type 1 diabetes. We wanted to study whether processing of milk plays a role. A population-based birth cohort of 6081 children with HLA-DQB1-conferred risk to type 1 diabetes was followed until the age of 15 years. We included 5545 children in the analyses. Food records were completed at the ages of 3 and 6 months and 1, 2, 3, 4 and 6 years, and diabetes-associated autoantibodies were measured at 3-12-month intervals. For milk products in the food composition database, we used conventional and processing-based classifications. We analysed the data using a joint model for longitudinal and time-to-event data. By the age of 6 years, islet autoimmunity developed in 246 children. Consumption of all cows' milk products together (energy-adjusted hazard ratio 1·06; 95 % CI 1·02, 1·11; P = 0·003), non-fermented milk products (1·06; 95 % CI 1·01, 1·10; P = 0·011) and fermented milk products (1·35; 95 % CI 1·10, 1·67; P = 0·005) was associated with an increased risk of islet autoimmunity. The early milk consumption was not associated with the risk beyond 6 years. We observed no clear differences based on milk homogenisation and heat treatment. Our results are consistent with the previous studies, which indicate that high milk consumption may cause islet autoimmunity in children at increased genetic risk. The study did not identify any specific type of milk processing that would clearly stand out as a sole risk factor apart from other milk products.

4.
J Proteome Res ; 14(2): 1010-24, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25531588

ABSTRACT

The present study reports the identification and comparison of all expressed cell-surface exposed proteins from the well-known probiotic L. rhamnosus GG and a related dairy strain, Lc705. To obtain this information, the cell-surface bound proteins were released from intact cells by trypsin shaving under hypertonic conditions with and without DTT. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses of the purified peptides identified a total of 102 and 198 individual proteins from GG and Lc705, respectively. Comparison of both data sets suggested that the Msp-type antigens (Msp1, Msp2) and the serine protease HtrA were uniquely exposed at the cell surface of GG, whereas the Lc705-specific proteins included lactocepin and a wider range of different moonlighting proteins. ImmunoEM analyses with the GG and Lc705 antibodies suggested that the whole-cell immunization yielded antibodies toward surface-bound proteins and proteins that were secreted or released from the cell-surface. One of the detected antigens was a pilus-like structure on the surface of GG cells, which was not detected with Lc705 antibodies. Further 2-DE immunoblotting analysis of GG proteins with both L. rhamnosus antisera revealed that majority of the detected antigens were moonlighting proteins with potential roles in adhesion, pathogen exclusion or immune stimulation. The present study provides the first catalog of surface-exposed proteins from lactobacilli and highlights the importance of the specifically exposed moonlighting proteins for adaptation and probiotic functions of L. rhamnosus.


Subject(s)
Bacterial Proteins/analysis , Immunoblotting/methods , Lacticaseibacillus rhamnosus/chemistry , Membrane Proteins/analysis , Proteome/analysis , Proteomics/methods , Antibodies, Bacterial , Bacterial Proteins/classification , Bacterial Proteins/physiology , Membrane Proteins/classification , Membrane Proteins/physiology , Proteome/chemistry
5.
Int J Mol Sci ; 14(3): 5668-85, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23478439

ABSTRACT

For different reasons, the amount of food loss for developing and developed countries is approximately equivalent. Altogether, these losses represent approximately 1/3 of the global food production. Significant amounts of pasteurised milk are lost due to bad smell and unpleasant taste. Currently, even under the best cold chain conditions, psychrotolerant spore-forming bacteria, some of which also harbour virulent factors, limit the shelf life of pasteurised milk. N2 gas-based flushing has recently been of interest for improving the quality of raw milk. Here, we evaluated the possibility of addressing bacterial growth in pasteurised milk during cold storage at 6 °C and 8 °C. Clearly, the treatments hindered bacterial growth, in a laboratory setting, when N2-treated milk were compared to the corresponding controls, which suggests that N2-flushing treatment constitutes a promising option to extend the shelf life of pasteurised milk.

6.
J Proteome Res ; 10(8): 3460-73, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21615180

ABSTRACT

The present study reports an in-depth proteome analysis of two Lactobacillus rhamnosus strains, the well-known probiotic strain GG and the dairy strain Lc705. We used GeLC-MS/MS, in which proteins are separated using 1-DE and identified using nanoLC-MS/MS, to generate high-quality protein catalogs. To maximize the number of identifications, all data sets were searched against the target databases using two search engines, Mascot and Paragon. As a result, over 1600 high-confidence protein identifications, covering nearly 60% of the predicted proteomes, were obtained from each strain. This approach enabled identification of more than 40% of all predicted surfome proteins, including a high number of lipoproteins, integral membrane proteins, peptidoglycan associated proteins, and proteins predicted to be released into the extracellular environment. A comparison of both data sets revealed the expression of more than 90 proteins in GG and 150 in Lc705, which lack evolutionary counterparts in the other strain. Differences were noted in proteins with a likely role in biofilm formation, phage-related functions, reshaping the bacterial cell wall, and immunomodulation. The present study provides the most comprehensive catalog of the Lactobacillus proteins to date and holds great promise for the discovery of novel probiotic effector molecules.


Subject(s)
Bacterial Proteins/metabolism , Lacticaseibacillus rhamnosus/metabolism , Proteome , Bacterial Proteins/genetics , Chromatography, Liquid , Computational Biology , Electrophoresis, Polyacrylamide Gel , Operon , Probiotics , Tandem Mass Spectrometry , Transcription, Genetic
7.
Arch Virol ; 156(7): 1217-33, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21465086

ABSTRACT

Lactobacillus delbrueckii phages are a great source of genetic diversity. Here, the genome sequences of Lb. delbrueckii phages LL-Ku, c5 and JCL1032 were analyzed in detail, and the genetic diversity of Lb. delbrueckii phages belonging to different taxonomic groups was explored. The lytic isometric group b phages LL-Ku (31,080 bp) and c5 (31,841 bp) showed a minimum nucleotide sequence identity of 90% over about three-fourths of their genomes. The genomic locations of their lysis modules were unique, and the genomes featured several putative overlapping transcription units of genes. LL-Ku and c5 virions displayed peptidoglycan hydrolytic activity associated with a ~36-kDa protein similar in size to the endolysin. Unexpectedly, the 49,433-bp genome of the prolate phage JCL1032 (temperate, group c) revealed a conserved gene order within its structural genes. Lb. delbrueckii phages representing groups a (a phage LL-H), b and c possessed only limited protein sequence homology. Genomic comparison of LL-Ku and c5 suggested that diversification of Lb. delbrueckii phages is mainly due to insertions, deletions and recombination. For the first time, the complete genome sequences of group b and c Lb. delbrueckii phages are reported.


Subject(s)
Bacteriophages/genetics , Bacteriophages/isolation & purification , Genome, Viral , Lactobacillus delbrueckii/virology , Bacteriophages/classification , Bacteriophages/physiology , Genomics , Host Specificity , Molecular Sequence Data , Phylogeny
8.
Front Microbiol ; 11: 1675, 2020.
Article in English | MEDLINE | ID: mdl-32849349

ABSTRACT

Worldwide, the dairy sector remains of vital importance for food production despite severe environmental constraints. The production and handling conditions of milk, a rich medium, promote inevitably the entrance of microbial contaminants, with notable impact on the quality and safety of raw milk and dairy products. Moreover, the persistence of high concentrations of microorganisms (especially bacteria and bacterial spores) in biofilms (BFs) present on dairy equipment or environments constitutes an additional major source of milk contamination from pre- to post-processing stages: in dairies, BFs represent a major concern regarding the risks of disease outbreaks and are often associated with significant economic losses. One consumption trend toward "raw or low-processed foods" combined with current trends in food production systems, which tend to have more automation and longer processing runs with simultaneously more stringent microbiological requirements, necessitate the implementation of new and obligatory sustainable strategies to respond to new challenges regarding food safety. Here, in light of studies, performed mainly with raw milk, that considered dominant "planktonic" conditions, we reexamine the changes triggered by cold storage alone or combined with nitrogen gas (N2) flushing on bacterial populations and discuss how the observed benefits of the treatment could also contribute to limiting BF formation in dairies.

9.
Front Microbiol ; 9: 1307, 2018.
Article in English | MEDLINE | ID: mdl-29971053

ABSTRACT

Cold storage aims to preserve the quality and safety of raw milk from farms to dairies; unfortunately, low temperatures also promote the growth of psychrotrophic bacteria, some of which produce heat-stable enzymes that cause spoilage of milk or dairy products. Previously, N2 gas flushing of raw milk has demonstrated significant potential as a method to hinder bacterial growth at both laboratory and pilot plant scales. Using a mass spectrometry-based lipidomics approach, we examined the impact of cold storage [at 6°C for up to 7 days, the control condition (C)], on the relative amounts of major phospholipids (phosphatidylethanolamine/PE, phosphatidylcholine/PC, phosphatidylserine/PS, phosphatidylinositol/PI, and sphingomyelin/SM) in three bovine raw milk samples, and compared it to the condition that received additional N2 gas flushing (N). As expected, bacterial growth was hindered by the N2-based treatment (over 4 log-units lower at day 7) compared to the non-treated control condition. At the end of the cold storage period, the control condition (C7) revealed higher hydrolysis of PC, SM, PE, and PS (the major species reached 27.2, 26.7, 34.6, and 9.9 µM, respectively), compared to the N2-flushed samples (N7) (the major species reached 55.6, 35.9, 54.0, and 18.8 µM, respectively). C7 samples also exhibited a three-fold higher phosphatidic acid (PA) content (6.8 µM) and a five-fold higher content (17.3 µM) of lysophospholipids (LPE, LPC, LPS, and LPI) whereas both lysophospholipids and PA remained at their initial levels for 7 days in N7 samples. Taking into consideration the significant phospholipid losses in the controls, the lipid profiling results together with the microbiological data suggest a major role of phospholipase (PLase) C (PLC) in phospholipolysis during cold storage. However, the experimental data also indicate that bacterial sphingomyelinase C, together with PLases PLD and PLA contributed to the degradation of phospholipids present in raw milk as well, and potential contributions from PLB activity cannot be excluded. Altogether, this lipidomics study highlights the beneficial effects of N2 flushing treatment on the quality and safety of raw milk through its ability to effectively hinder phospholipolysis during cold storage.

10.
Front Microbiol ; 8: 655, 2017.
Article in English | MEDLINE | ID: mdl-28469611

ABSTRACT

Antibiotic resistance has been noted to be a major and increasing human health issue. Cold storage of raw milk promotes the thriving of psychrotrophic/psychrotolerant bacteria, which are well known for their ability to produce enzymes that are frequently heat stable. However, these bacteria also carry antibiotic resistance (AR) features. In places, where no cold chain facilities are available and despite existing recommendations numerous adulterants, including antibiotics, are added to raw milk. Previously, N2 gas flushing showed real potential for hindering bacterial growth in raw milk at a storage temperature ranging from 6 to 25°C. Here, the ability of N2 gas (N) to tackle antibiotic- resistant bacteria was tested and compared to that of the activated lactoperoxidase system (HT) for three raw milk samples that were stored at 6°C for 7 days. To that end, the mesophiles and psychrotrophs that were resistant to gentamycin (G), ceftazidime (Ce), levofloxacin (L), and trimethoprim-sulfamethoxazole (TS) were enumerated. For the log10 ratio (which is defined as the bacterial counts from a certain condition divided by the counts on the corresponding control), classical Analyses of Variance (ANOVA) was performed, followed by a mean comparison with the Ryan-Einot-Gabriel-Welsch multiple range test (REGWQ). If the storage "time" factor was the major determinant of the recorded effects, cold storage alone or in combination with HT or with N promoted a sample-dependent response in consideration of the AR levels. The efficiency of N in limiting the increase in AR was highest for fresh raw milk and was judged to be equivalent to that of HT for one sample and superior to that of HT for the two other samples; moreover, compared to HT, N seemed to favor a more diverse community at 6°C that was less heavily loaded with antibiotic multi-resistance features. Our results imply that N2 gas flushing could strengthen cold storage of raw milk by tackling the bacterial spoilage potential while simultaneously hindering the increase of bacteria carrying antibiotic resistance/multi-resistance features.

11.
Front Microbiol ; 7: 839, 2016.
Article in English | MEDLINE | ID: mdl-27313575

ABSTRACT

To prevent excessive bacterial growth in raw milk, the FAO recommends two options: either cold storage or activation of the lactoperoxidase system (LPs/HT) in milk with the addition of two chemical preservatives, hydrogen peroxide (H) and thiocyanate (T). N2 gas flushing of raw milk has shown great potential to control bacterial growth in a temperature range of 6-12°C without promoting undesired side effects. Here, the effect of N2 gas (N) was tested as a single treatment and in combination with the lactoperoxidase system (NHT) on seven raw milk samples stored at 15 or 25°C. For the ratio defined as bacterial counts from a certain treatment/counts on the corresponding control, a classical Analyse of Variance (ANOVA) was performed, followed by mean comparison with the Ryan-Einot-Gabriel-Welsch multiple range test (REGWQ). Altogether, the growth inhibition was slightly but significantly higher at 25°C than at 15°C. Except for one sample, all ratios were lower for HT than for N alone; however, these differences were not judged to be significant for five samples by the REGWQ test; in the remaining two samples, N was more effective than HT in one case and less effective in the other case. This study shows that N2 gas flushing, which inhibited bacterial growth in raw milk at 15 and 25°C for 24 and 12 h, respectively, could constitute an alternative to LPs where no cold storage facilities exist, especially as a replacement for adulterating substances.

12.
PLoS One ; 11(1): e0146015, 2016.
Article in English | MEDLINE | ID: mdl-26730711

ABSTRACT

The quality and safety of raw milk still remains a worldwide challenge. Culture-dependent methods indicated that the continuous N2 gas-flushing of raw milk reduced the bacterial growth during cold storage by up to four orders of magnitude, compared to cold storage alone. This study investigated the influence of N2 gas-flushing on bacterial diversity in bovine raw-milk samples, that were either cold stored at 6°C or additionally flushed with pure N2 for up to one week. Next-generation sequencing (NGS) of the V1-V2 hypervariable regions of 16S rRNA genes, derived from amplified cDNA, which was obtained from RNA directly isolated from raw-milk samples, was performed. The reads, which were clustered into 2448 operational taxonomic units (OTUs), were phylogenetically classified. Our data revealed a drastic reduction in the diversity of OTUs in raw milk during cold storage at 6°C at 97% similarity level; but, the N2-flushing treatment alleviated this reduction and substantially limited the loss of bacterial diversity during the same cold-storage period. Compared to cold-stored milk, the initial raw-milk samples contained less Proteobacteria (mainly Pseudomonadaceae, Moraxellaceae and Enterobacteriaceae) but more Firmicutes (mainly Ruminococcaceaea, Lachnospiraceae and Oscillospiraceaea) and Bacteroidetes (mainly Bacteroidales). Significant differences between cold-stored and additionally N2-flushed milk were mainly related to higher levels of Pseudomononadaceae (including the genera Pseudomonas and Acinetobacter) in cold-stored milk samples; furthermore, rare taxa were better preserved by the N2 gas flushing compared to the cold storage alone. No major changes in bacterial composition with time were found regarding the distribution of the major 9 OTUs, that dominated the Pseudomonas genus in N2-flushed or non-flushed milk samples, other than an intriguing predominance of bacteria related to P. veronii. Overall, this study established that neither bacteria causing milk spoilage nor any well-known human pathogen or anaerobe benefited from the N2 gas flushing even though the N2-flushed and non-flushed cold-stored milk differed in bacterial counts by up to 104-fold.


Subject(s)
Bacteria/growth & development , Cryopreservation/methods , Microbiota/drug effects , Milk/microbiology , Nitrogen/pharmacology , Pseudomonas/growth & development , Animals , Bacteria/classification , Bacteria/genetics , Biodiversity , Cattle , Cold Temperature , Colony Count, Microbial , Food Microbiology/methods , Genetic Variation/drug effects , Microbiota/genetics , Phylogeny , Pseudomonas/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
13.
Appl Environ Microbiol ; 57(6): 1805-1812, 1991 Jun.
Article in English | MEDLINE | ID: mdl-16348513

ABSTRACT

The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages.

14.
Microb Cell Fact ; 2(1): 2, 2003 Apr 09.
Article in English | MEDLINE | ID: mdl-12740045

ABSTRACT

BACKGROUND: Use of lactose-rich concentrates from dairy processes for the induction of recombinant gene's expression has not received much attention although they are interesting low cost substrates for production of recombinant enzymes. Applicability of dairy waste for induction of recombinant genes in Escherichia coli was studied. Clones expressing Lactobacillus phage muramidase and Lactobacillus alcohol dehydrogenase were used for the experiments. RESULTS: Shake flask cultivations in mineral salt medium showed that cheese whey or deproteinised whey induced gene expression as efficiently as IPTG (isopropyl-beta-D-thiogalactopyranoside) or pure lactose. Addition of yeast extract or proteolytically degraded whey proteins did not improve the recombinant protein yield. In contrast, addition of yeast extract to the well-balanced mineral salt medium decreased the product yield. Feeding with glycerol provided sufficient amount of easily assimilable carbon source during the induction period without preventing lactose intake and induction by lactose. High-cell-density fed-batch cultivations showed that product yields comparable to IPTG-induction can be achieved by feeding bacteria with a mixture of glycerol and concentrated whey permeate during the induction. CONCLUSION: Whey and concentrated whey permeate can be applied as an alternative inducer in recombinant high-cell-density fed-batch fermentations. The yield of the recombinant product was comparable to fermentations induced by IPTG. In low-cell-density shake flask experiments the yield was higher with whey or whey permeate than with IPTG.

15.
Int J Food Microbiol ; 84(2): 189-96, 2003 Jul 25.
Article in English | MEDLINE | ID: mdl-12781941

ABSTRACT

PCR primers derived from Lactobacillus rhamnosus phage Lc-Nu genome were used to screen the presence of phage-related sequences in Lb. rhamnosus strains. Several primer pairs derived from structural and replication gene regions of phage Lc-Nu amplified PCR products of expected sizes from bacterial strains revealing phage-related sequences in 10 of 11 Lb. rhamnosus strains. Strain-specific PCR primers for three probiotic Lb. rhamnosus strains were derived from these phage-related sequences for identification and detection purposes. Specificity of these primers was tested against 11 Lb. rhamnosus strains and over 40 other bacterial strains.


Subject(s)
Bacteriophages/genetics , Lactobacillus/virology , Polymerase Chain Reaction/methods , Probiotics , Base Sequence , DNA Primers , DNA, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Viral/analysis , DNA, Viral/genetics , Lactobacillus/classification , Lactobacillus/isolation & purification , Sensitivity and Specificity , Species Specificity
16.
Microbiol Res ; 157(4): 311-5, 2002.
Article in English | MEDLINE | ID: mdl-12501995

ABSTRACT

Pseudomonas tolaasii, causing brown blotch disease on cultivated mushrooms, and yielding a white line precipitate towards P. "reactans", has been shown to induce lysis of erythrocytes. Some Finnish strains isolated from diseased mushroom fruit bodies, although harboring the typical features of P. tolaasii, proved to be distinct, and have been allocated to a nov. sp. P. costantinii. We examined in these study whether all brown blotch causing agents were hemolytic. The induction of erythrocytes lysis seemed to be a rather common feature of mushroom associated-pseudomonads, especially for strains involved in the production of a white-line-in agar.


Subject(s)
Agaricus , Hemolysis , Pleurotus , Pseudomonas/pathogenicity , Agaricus/growth & development , Animals , Cattle , Culture Media , Pleurotus/growth & development
17.
Microbiol Res ; 157(1): 7-11, 2002.
Article in English | MEDLINE | ID: mdl-11911616

ABSTRACT

A sharply defined white line in vitro forms between the pathogenic form of Pseudomonas tolaasii and another Pseudomonas bacterium, referred to as "reactans". This interaction has been considered as highly specific. However, results presented in this study rise doubt about the strict specificity of this interaction, as some other pseudomonads, associated with the cultivated mushroom Agaricus bisporus, also yielded a white line precipitate when they were streaked towards Pseudomonas tolaasii LMG 2342T. Moreover, some Finnish isolates inducing brown blotch symptoms on mushrooms like P. tolaasii(T), produced a typical white precipitate when streaked towards P. "reactans" LMG5329, even though phenotypical and genotypical features exclude these isolates from the species P. tolaasii. We propose that the white-line-in-agar (WLA) test should no longer be considered as an unequivocal diagnostic trait of P. tolaasii.


Subject(s)
Agaricales/growth & development , Pseudomonas/growth & development , Bacteriological Techniques/methods , Pseudomonas/isolation & purification , Pseudomonas/pathogenicity
18.
Microbiol Res ; 157(2): 109-14, 2002.
Article in English | MEDLINE | ID: mdl-12002399

ABSTRACT

A new insertion sequence element designated ISLdl1 has been isolated and characterized from Lactobacillus delbrueckii subsp. lactis ATCC 15808. It is the first IS element of L. delbrueckii subsp. lactis described. ISLdl1 is a 1508 bp element flanked by 26 bp imperfect inverted repeats, and generates an 8 bp AT-rich target duplication upon insertion. It contains one ORF encoding a protein of 455 amino acids. This protein shows significant homology to the transposases of the ISL3 family and to other bacterial transposases and putative transposases, and no homology to other proteins. Based on these structural features, ISLdl1 belongs to the ISL3 family. ISLdl1 is present in about 10-12 copies in the genome of ATCC 15808 based on Southern hybridization analysis. Location sites of eight ISLdl1 copies have been determined in more detail by cloning and sequencing one or both of the flanking regions of each ISLdl1 copy. ISLdl1 or ISLdl1-like IS elements were found exclusively in Lactobacillus delbrueckii species and in all strains of subsp. lactis tested. The nucleotide sequence of ISLdl1 is deposited under the accession number AJ302652.


Subject(s)
DNA Transposable Elements/genetics , Lactobacillus/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Lactobacillus/metabolism , Molecular Sequence Data , Open Reading Frames/genetics , Sequence Analysis, DNA
19.
Microbiol Res ; 157(2): 93-102, 2002.
Article in English | MEDLINE | ID: mdl-12002406

ABSTRACT

Sixteen representative isolates of Pseudomonas tolaasii, the causal agent of brown blotch of the cultivated mushroom Agaricus bisporus, were previously assigned to two siderovars (sv1 and sv2) on the basis of pyoverdines synthesized. Each isolate was pathogenic and produced a typical white line precipitate when cultured adjacent to Pseudomonas "reactans" strain LMG 5329. These 16 isolates of P. tolaasii, representing sv1 and sv2, were further characterized using genotypic methods to examine the relationships between the isolates. Rep-PCR studies revealed two distinct patterns from these isolates, which were consistent with the siderovar grouping. Ribotyping differentiated P. tolaasii LMG 2342T (sv1) and PS 3a (sv2) into two distinct ribotypes. A pair of primers, targeted to a 2.1-kb fragment of tl1 (encoding a tolaasin peptide synthetase), yielded the same PCR product from P. tolaasii LMG 2342T (sv1) and PS 22.2 (sv1), but not from PS 3a (sv2). Southern blot analysis indicated that homologues of tl1 are present in PS 3a, but the pattern of hybridization differed from PS 22.2 and LMG 2342T. Sequence determination and analysis of the internally transcribed spacer region ITSI for P. tolaasii LMG 2342T, LMG 6641, and PS 3a strains further supported the presence of the two siderovars. It is concluded that considerable genotypic differences exist among Finnish isolates of P. tolaasii causing brown blotch disease on the cultivated mushroom, which is in agreement with the phenotypic diversity highlighted through previous siderotyping studies.


Subject(s)
Agaricus/growth & development , Oligopeptides , Pseudomonas/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Base Sequence , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/genetics , Depsipeptides , Genotype , Molecular Sequence Data , Pigments, Biological/genetics , Pigments, Biological/metabolism , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Pseudomonas/growth & development , Pseudomonas/pathogenicity , Ribotyping , Sequence Alignment , Sequence Analysis, DNA
20.
Front Microbiol ; 5: 619, 2014.
Article in English | MEDLINE | ID: mdl-25452751

ABSTRACT

Gram-negative Pseudomonas and Gram-positive Bacillus are the most common spoilage bacteria in raw and pasteurized milk, respectively. In previous studies, nitrogen (N2) gas flushing treatments of raw and pasteurized milk at cold chain-temperatures inhibited bacterial spoilage and highlighted different susceptibilities to the N2 treatment with the exclusion of certain bacterial types. Here, we investigated the effects of pure N2 gas flushing on representative strains of these genera grown in mono- or co-cultures at 15 and 25°C. Bacillus weihenstephanensis, a frequent inhabitant of fluid dairy products, is represented by the genome-sequenced KBAB4 strain. Among Pseudomonas, P. tolaasii LMG 2342(T) and strain C1, a raw milk psychrotroph, were selected. The N2 gas flushing treatment revealed: (1) temperature-dependent responses; (2) inhibition of the growth of both pseudomonads; (3) emergence of small colony variants (SCVs) for B. weihenstephanensis strain KBAB4 at 15°C induced by the N2 treatment or when grown in co-culture with Pseudomonas strains; (4) N2 gas flushing modulates (suppressed or stimulated) bacterial antagonistic reactions in co-cultures; (5) most importantly, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed that at 25°C the majority of the KBAB4 cells were killed by pure N2 gas flushing. This observation constitutes the first evidence that N2 gas flushing has bactericidal effects.

SELECTION OF CITATIONS
SEARCH DETAIL