Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Proc Natl Acad Sci U S A ; 120(44): e2218778120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37844214

ABSTRACT

Pierolapithecus catalaunicus (~12 million years ago, northeastern Spain) is key to understanding the mosaic nature of hominid (great ape and human) evolution. Notably, its skeleton indicates that an orthograde (upright) body plan preceded suspensory adaptations in hominid evolution. However, there is ongoing debate about this species, partly because the sole known cranium, preserving a nearly complete face, suffers from taphonomic damage. We 1) carried out a micro computerized tomography (CT) based virtual reconstruction of the Pierolapithecus cranium, 2) assessed its morphological affinities using a series of two-dimensional (2D) and three-dimensional (3D) morphometric analyses, and 3) modeled the evolution of key aspects of ape face form. The reconstruction clarifies many aspects of the facial morphology of Pierolapithecus. Our results indicate that it is most similar to great apes (fossil and extant) in overall face shape and size and is morphologically distinct from other Middle Miocene apes. Crown great apes can be distinguished from other taxa in several facial metrics (e.g., low midfacial prognathism, relatively tall faces) and only some of these features are found in Pierolapithecus, which is most consistent with a stem (basal) hominid position. The inferred morphology at all ancestral nodes within the hominoid (ape and human) tree is closer to great apes than to hylobatids (gibbons and siamangs), which are convergent with other smaller anthropoids. Our analyses support a hominid ancestor that was distinct from all extant and fossil hominids in overall facial shape and shared many features with Pierolapithecus. This reconstructed ancestral morphotype represents a testable hypothesis that can be reevaluated as new fossils are discovered.


Subject(s)
Hominidae , Hylobatidae , Animals , Humans , Biological Evolution , Hominidae/anatomy & histology , Skull/anatomy & histology , Fossils , Haplorhini , Hylobates , Phylogeny
2.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33495351

ABSTRACT

Late Miocene great apes are key to reconstructing the ancestral morphotype from which earliest hominins evolved. Despite consensus that the late Miocene dryopith great apes Hispanopithecus laietanus (Spain) and Rudapithecus hungaricus (Hungary) are closely related (Hominidae), ongoing debate on their phylogenetic relationships with extant apes (stem hominids, hominines, or pongines) complicates our understanding of great ape and human evolution. To clarify this question, we rely on the morphology of the inner ear semicircular canals, which has been shown to be phylogenetically informative. Based on microcomputed tomography scans, we describe the vestibular morphology of Hispanopithecus and Rudapithecus, and compare them with extant hominoids using landmark-free deformation-based three-dimensional geometric morphometric analyses. We also provide critical evidence about the evolutionary patterns of the vestibular apparatus in living and fossil hominoids under different phylogenetic assumptions for dryopiths. Our results are consistent with the distinction of Rudapithecus and Hispanopithecus at the genus rank, and further support their allocation to the Hominidae based on their derived semicircular canal volumetric proportions. Compared with extant hominids, the vestibular morphology of Hispanopithecus and Rudapithecus most closely resembles that of African apes, and differs from the derived condition of orangutans. However, the vestibular morphologies reconstructed for the last common ancestors of dryopiths, crown hominines, and crown hominids are very similar, indicating that hominines are plesiomorphic in this regard. Therefore, our results do not conclusively favor a hominine or stem hominid status for the investigated dryopiths.


Subject(s)
Hominidae/anatomy & histology , Hominidae/classification , Phylogeny , Vestibule, Labyrinth/anatomy & histology , Animals , Fossils , Principal Component Analysis , Time Factors
3.
J Hum Evol ; 175: 103309, 2023 02.
Article in English | MEDLINE | ID: mdl-36716680

ABSTRACT

Hominoids diverged from cercopithecoids during the Oligocene in Afro-Arabia, initially radiating in that continent and subsequently dispersing into Eurasia. From the Late Miocene onward, the geographic range of hominoids progressively shrank, except for hominins, which dispersed out of Africa during the Pleistocene. Although the overall picture of hominoid evolution is clear based on available fossil evidence, many uncertainties persist regarding the phylogeny and paleobiogeography of Miocene apes (nonhominin hominoids), owing to their sparse record, pervasive homoplasy, and the decimated current diversity of this group. We review Miocene ape systematics and evolution by focusing on the most parsimonious cladograms published during the last decade. First, we provide a historical account of the progress made in Miocene ape phylogeny and paleobiogeography, report an updated classification of Miocene apes, and provide a list of Miocene ape species-locality occurrences together with an analysis of their paleobiodiversity dynamics. Second, we discuss various critical issues of Miocene ape phylogeny and paleobiogeography (hylobatid and crown hominid origins, plus the relationships of Oreopithecus) in the light of the highly divergent results obtained from cladistic analyses of craniodental and postcranial characters separately. We conclude that cladistic efforts to disentangle Miocene ape phylogeny are potentially biased by a long-branch attraction problem caused by the numerous postcranial similarities shared between hylobatids and hominids-despite the increasingly held view that they are likely homoplastic to a large extent, as illustrated by Sivapithecus and Pierolapithecus-and further aggravated by abundant missing data owing to incomplete preservation. Finally, we argue that-besides the recovery of additional fossils, the retrieval of paleoproteomic data, and a better integration between cladistics and geometric morphometrics-Miocene ape phylogenetics should take advantage of total-evidence (tip-dating) Bayesian methods of phylogenetic inference combining morphologic, molecular, and chronostratigraphic data. This would hopefully help ascertain whether hylobatid divergence was more basal than currently supported.


Subject(s)
Hominidae , Animals , Hominidae/anatomy & histology , Phylogeny , Biological Evolution , Bayes Theorem , Fossils
4.
J Hum Evol ; 181: 103395, 2023 08.
Article in English | MEDLINE | ID: mdl-37320961

ABSTRACT

The morphological adaptations of euprimates have been linked to their origin and early evolution in an arboreal environment. However, the ancestral and early locomotor repertoire of this group remains contentious. Although some tarsal bones like the astragalus and the calcaneus have been thoroughly studied, the navicular remains poorly studied despite its potential implications for foot mobility. Here, we evaluate early euprimate locomotion by assessing the shape of the navicular-an important component of the midtarsal region of the foot-using three-dimensional geometric morphometrics in relation to quantified locomotor repertoire in a wide data set of extant primates. We also reconstruct the locomotor repertoire of representatives of the major early primate lineages with a novel phylogenetically informed discriminant analysis and characterize the changes that occurred in the navicular during the archaic primate-euprimate transition. To do so, we included in our study an extensive sample of naviculars (36 specimens) belonging to different species of adapiforms, omomyiforms, and plesiadapiforms. Our results indicate that navicular shape embeds a strong functional signal, allowing us to infer the type of locomotion of extinct primates. We demonstrate that early euprimates displayed a diverse locomotor behavior, although they did not reach the level of specialization of some living forms. Finally, we show that the navicular bone experienced substantial reorganization throughout the archaic primate-euprimate transition, supporting the major functional role of the tarsus during early primate evolution. This study demonstrates that navicular shape can be used as a reliable proxy for primate locomotor behavior. In addition, it sheds light on the diverse locomotor behavior of early primates as well as on the archaic primate-euprimate transition, which involved profound morphological changes within the tarsus, including the navicular bone.


Subject(s)
Biological Evolution , Talus , Animals , Fossils , Talus/anatomy & histology , Primates/anatomy & histology , Foot/anatomy & histology , Locomotion
5.
J Hum Evol ; 177: 103326, 2023 04.
Article in English | MEDLINE | ID: mdl-36863301

ABSTRACT

A vast diversity of catarrhines primates has been uncovered in the Middle to Late Miocene (12.5-9.6 Ma) of the Vallès-Penedès Basin (northeastern Spain), including several hominid species (Pierolapithecus catalaunicus, Anoiapithecus brevirostris, Dryopithecus fontani, Hispanopithecus laietanus, and Hispanopithecus crusafonti) plus some remains attributed to 'Sivapithecus' occidentalis (of uncertain taxonomic validity). However, Pierolapithecus and Anoiapithecus have also been considered junior synonyms of Dryopithecus by some authors, which entail a lower generic diversity and an inflated intrageneric variation of the latter genus. Since the distinction of these taxa partly relies on dental features, the detailed and quantitative analysis of tooth shape might help disentangling the taxonomic diversity of these Miocene hominids. Using diffeomorphic surface matching and three-dimensional geometric morphometrics, we investigate the enamel-dentine junction shape (which is a reliable taxonomic proxy) of these Miocene hominids, with the aim of investigating their degree of intra- and intergeneric variation compared with that of extant great ape genera. We conducted statistical analyses, including between-group principal component analyses, canonical variate analyses, and permutation tests, to investigate whether the individual and combined (i.e., Dryopithecus s.l.) variation of the extinct genera exceeds that of the extant great apes. Our results indicate that Pierolapithecus, Anoiapithecus, Dryopithecus, and Hispanopithecus show morphological differences of enamel-dentine junction shape relative to the extant great apes that are consistent with their attribution to different genera. Specifically, the variation displayed by the Middle Miocene taxa combined exceeds that of extant great ape genera, thus undermining the single-genus hypothesis. 'Sivapithecus' occidentalis specimens fall close to Dryopithecus but in the absence of well-preserved comparable teeth for Pierolapithecus and Anoiapithecus, their taxonomic attribution remains uncertain. Among the Hispanopithecus sample, IPS1802 from Can Llobateres stands out and might either be an outlier in terms of morphology, or represent another dryopithecine taxon.


Subject(s)
Hominidae , Tooth , Animals , Fossils , Tooth/anatomy & histology , Hominidae/anatomy & histology , Cercopithecidae , Dentin , Dental Enamel
6.
J Hum Evol ; 185: 103454, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37977021

ABSTRACT

The genus Macaca includes medium- to large-bodied monkeys and represents one of the most diverse primate genera, also having a very large geographic range. Nowadays, wild macaque populations are found in Asia and Africa, inhabiting a wide array of habitats. Fossil macaques were also present in Europe from the Late Miocene until the Late Pleistocene. Macaques are considered ecologically flexible monkeys that exhibit highly opportunistic dietary strategies, which may have been critical to their evolutionary success. Nevertheless, available ecological information regarding fossil European species is very sparse, limiting our knowledge of their evolutionary history in this geographic area. To further our understanding of fossil European macaque ecology, we investigated the dietary ecology of Macaca majori, an insular endemic species from Sardinia. In particular, we characterized the dental capabilities and potential dietary adaptations of M. majori through dental topographic and enamel thickness analyses of two M2s from the Early Pleistocene site of Capo Figari (1.8 Ma). We also assessed its diet through dental microwear texture analysis, while the microwear texture of M. majori was also compared with microwear textures from other European fossil macaques from mainland Europe. The dental topographic and enamel thickness analyses suggest that M. majori frequently consumes hard/mechanically challenging and/or abrasive foods. The results of the dental microwear analysis are consistent with this interpretation and further suggest that M. majori probably exhibited more durophagous dietary habits than mainland Plio-Pleistocene macaques. Overall, our results indicate that M. majori probably occupied a different dietary niche compared to its mainland fossil relatives, which suggests that they may have inhabited different paleoenvironments.


Subject(s)
Fossils , Macaca , Animals , Italy , Primates , Diet/veterinary
7.
J Hum Evol ; 185: 103441, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37857126

ABSTRACT

Hispanopithecus laietanus from the Late Miocene (9.8 Ma) of Can Llobateres 1 (CLL1; Vallès-Penedès Basin, NE Iberian Peninsula) represents one of the latest occurrences of fossil apes in Western mainland Europe, where they are last recorded at ∼9.5 Ma. The paleoenvironment of CLL1 is thus relevant for understanding the extinction of European hominoids. To refine paleoenvironmental inferences for CLL1, we apply ecometric models based on functional crown type (FCT) variables-a scoring scheme devised to capture macroscopic functional traits of occlusal shape and wear surfaces of herbivorous large mammal molars. Paleotemperature and paleoprecipitation estimates for CLL1 are provided based on published regional regression models linking average FCT of large herbivorous mammal communities to climatic conditions. A mapping to Whittaker's present-day biome classification is also attempted based on these estimates, as well as a case-based reasoning via canonical variate analysis of FCT variables from five relevant biomes. Estimates of mean annual temperature (25 °C) and mean annual precipitation (881 mm) classify CLL1 as a tropical seasonal forest/savanna, only in partial agreement with the canonical variate analysis results, which classify CLL1 as a tropical rainforest with a higher probability. The former biome agrees better with previous inferences derived from fossil plants and mammals, as well as preliminary isotopic data. The misclassification of CLL1 as a tropical forest is attributed to the mixture of forest-adapted taxa with others adapted to more open environments, given that faunal and plant composition indicates the presence of a dense wetland/riparian forest with more open woodlands nearby. The tested FCT ecometric approaches do not provide unambiguous biome classification for CLL1. Nevertheless, our results are consistent with those from other approaches, thus suggesting that FCT variables are potentially useful to investigate paleoenvironmental changes through time and space-including those that led to the extinction of European Miocene apes.


Subject(s)
Hominidae , Tooth , Animals , Fossils , Europe , Ecosystem , Plants , Mammals
8.
J Hum Evol ; 165: 103163, 2022 04.
Article in English | MEDLINE | ID: mdl-35299091

ABSTRACT

Homo erectus s.l. is key for deciphering the origin and subsequent evolution of genus Homo. However, the characterization of this species is hindered by the existence of multiple variants in both mainland and insular Asia, as a result of divergent chronogeographical evolutionary trends, genetic isolation, and interbreeding with other human species. Previous research has shown that cochlear morphology embeds taxonomic and phylogenetic information that may help infer the phylogenetic relationships among hominin species. Here we describe the cochlear morphology of two Indonesian H. erectus individuals (Sangiran 2 and 4), and compare it with a sample of australopiths, Middle to Late Pleistocene humans, and extant humans by means of linear measurements and both principal components and canonical variates analyses performed on shape ratios. Our results indicate that H. erectus displays a mosaic morphology that combines plesiomorphic (australopithlike) features (such as a chimplike round cochlear cross section and low cochlear thickness), with derived characters of later humans (a voluminous and long cochlea, possibly related to hearing abilities)-consistent with the more basal position of H. erectus. Our results also denote substantial variation between the two studied individuals, particularly in the length and radius of the first turn, as well as cross-sectional shape. Given the small size of the available sample, it is not possible to discern whether such differences merely reflect intraspecific variation among roughly coeval H. erectus individuals or whether they might result from greater age differences between them than currently considered. However, our results demonstrate that most characters found in later humans were already present in Indonesian H. erectus, with the exception of Neanderthals, which display an autapomorphic condition relative to other Homo species.


Subject(s)
Fossils , Hominidae , Animals , Biological Evolution , Cochlea , Hominidae/anatomy & histology , Humans , Indonesia , Phylogeny
9.
J Hum Evol ; 170: 103237, 2022 09.
Article in English | MEDLINE | ID: mdl-35988385

ABSTRACT

The Abocador de Can Mata (ACM) composite stratigraphic sequence (els Hostalets de Pierola, Vallès-Penedès Basin, NE Iberian Peninsula) has yielded a diverse primate assemblage from the late Aragonian (Middle to Late Miocene). Detailed litho-, bio-, and magnetostratigraphic control has enabled an accurate dating of these fossil remains. Comparable data, however, were lacking for the nearby locality of Can Mata 1 (CM1), which yielded a dryopithecine canine of a female individual. Given the lack of hipparionin equids and giraffids, CM1 has been correlated to the latest Aragonian (Mammal Neogene [MN] zone MN7+8). Here we revise the age of CM1 based on fieldwork and associated paleomagnetic samplings undertaken in 2018-2021. Our results extend the ACM composite sequence upward and indicate that CM1 correlates to the earliest Vallesian (MN9). The updated ACM sequence has a thickness of ∼300 m and comprises 12 magnetozones correlated to subchrons C5Ar.1r to C5n.2n (∼12.6-11.1 Ma; latest MN6 to earliest MN9, late Aragonian to earliest Vallesian). CM1 is correlated to C5r.1r (11.146-11.056 Ma), with an interpolated age of 11.11 Ma, thus postdating the dispersal of hipparionin horses into the Vallès-Penedès Basin-which is correlated to the previous subchron C5r.1n, with an interpolated age of 11.18 Ma, and by definition marks the beginning of the Vallesian. CM1 also minimally postdates the earliest record of giraffids at ACM-representing their earliest well-dated occurrence in the basin-being correlated to C5r.1n with an interpolated age of 11.11 Ma. We conclude that CM1 has an earliest Vallesian (MN9) age of ∼11.1 Ma, intermediate between the Aragonian dryopithecins and the Vallesian hispanopithecins. Ongoing paleontological surveillance at ACM thus offers the prospect to yield additional earliest Vallesian ape remains, which are essential to clarify their taxonomic allocation as well as to confirm whether hispanopithecins evolved locally from dryopithecins rather than immigrating from elsewhere during MN9.


Subject(s)
Hominidae , Animals , Dogs , Female , Fossils , Horses , Mammals , Paleontology , Primates , Reptiles
10.
BMC Biol ; 19(1): 6, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33461551

ABSTRACT

BACKGROUND: The two main primate groups recorded throughout the European Miocene, hominoids and pliopithecoids, seldom co-occur. Due to both their rarity and insufficiently understood palaeoecology, it is currently unclear whether the infrequent co-occurrence of these groups is due to sampling bias or reflects different ecological preferences. Here we rely on the densely sampled primate-bearing sequence of Abocador de Can Mata (ACM) in Spain to test whether turnovers in primate assemblages are correlated with palaeoenvironmental changes. We reconstruct dietary evolution through time (ca. 12.6-11.4 Ma), and hence climate and habitat, using tooth-wear patterns and carbon and oxygen isotope compositions of enamel of the ubiquitous musk-deer Micromeryx. RESULTS: Our results reveal that primate species composition is strongly correlated with distinct environmental phases. Large-bodied hominoids (dryopithecines) are recorded in humid, densely-forested environments on the lowermost portion of the ACM sequence. In contrast, pliopithecoids inhabited less humid, patchy ecosystems, being replaced by dryopithecines and the small-bodied Pliobates toward the top of the series in gallery forests embedded in mosaic environments. CONCLUSIONS: These results support the view that pliopithecoid primates preferred less humid habitats than hominoids, and reveal that differences in behavioural ecology were the main factor underpinning their rare co-occurrence during the European Miocene. Our findings further support that ACM hominoids, like Miocene apes as a whole, inhabited more seasonal environments than extant apes. Finally, this study highlights the importance of high-resolution, local investigations to complement larger-scale analyses and illustrates that continuous and densely sampled fossiliferous sequences are essential for deciphering the complex interplay between biotic and abiotic factors that shaped past diversity.


Subject(s)
Biological Evolution , Catarrhini/physiology , Diet/veterinary , Life History Traits , Animals , Ecosystem , Fossils , Spain
11.
J Hum Evol ; 151: 102930, 2021 02.
Article in English | MEDLINE | ID: mdl-33422741

ABSTRACT

Pliopithecoids are an extinct group of catarrhine primates from the Miocene of Eurasia. More than 50 years ago, they were linked to hylobatids due to some morphological similarities, but most subsequent studies have supported a stem catarrhine status, due to the retention of multiple plesiomorphic features (e.g., the ectotympanic morphology) relative to crown catarrhines. More recently, some morphological similarities to hominoids have been noted, raising the question of whether they could be stem members of this clade. To re-evaluate these competing hypotheses, we examine the morphology of the semicircular canals of the bony labyrinth of the middle Miocene pliopithecid Epipliopithecus vindobonensis. The semicircular canals are suitable to test between these hypotheses because (1) they have been shown to embed strong phylogenetic signal and reliably discriminate among major clades; (2) several potential hominoid synapomorphies have been identified previously in the semicircular canals; and (3) semicircular canal morphology has not been previously described for any pliopithecoid. We use a deformation-based (landmark-free) three-dimensional geometric morphometric approach to compare Epipliopithecus with a broad primate sample of extant and extinct anthropoids. We quantify similarities in semicircular canal morphology using multivariate analyses, reconstruct ancestral morphotypes by means of a phylomorphospace approach, and identify catarrhine and hominoid synapomorphies based on discrete characters. Epipliopithecus semicircular canal morphology most closely resembles that of platyrrhines and Aegyptopithecus due to the retention of multiple anthropoid symplesiomorphies. However, Epipliopithecus is most parsimoniously interpreted as a stem catarrhine more derived than Aegyptopithecus due to the possession of a crown catarrhine synapomorphy (i.e., the rounded anterior canal), combined with the lack of other catarrhine and any hominoid synapomorphies. Some similarities with hylobatids and atelids are interpreted as homoplasies likely related to positional behavior. The semicircular canal morphology of Epipliopithecus thus supports the common view that pliopithecoids are stem catarrhines.


Subject(s)
Catarrhini/anatomy & histology , Fossils/anatomy & histology , Phylogeny , Vestibule, Labyrinth/anatomy & histology , Animals
12.
J Hum Evol ; 161: 103073, 2021 12.
Article in English | MEDLINE | ID: mdl-34628300

ABSTRACT

The small-bodied Miocene catarrhine Pliobates cataloniae (11.6 Ma, Spain) displays a mosaic of catarrhine symplesiomorphies and hominoid synapomorphies that hinders deciphering its phylogenetic relationships. Based on cladistic analyses, it has been interpreted as a stem hominoid or as a pliopithecoid. Intriguingly, the carotid canal orientation of Pliobates was originally described as hylobatid-like. The variation in carotid canal morphology among anthropoid clades shown in previous studies suggests that this structure might be phylogenetically informative. However, its potential for phylogenetic reconstruction among extinct catarrhines remains largely unexplored. Here we quantify the orientation, proportions, and course of the carotid canal in Pliobates, extant anthropoids and other Miocene catarrhines (Epipliopithecus, Victoriapithecus, and Ekembo) using three-dimensional morphometric techniques. We also compute phylogenetic signal and reconstruct the ancestral carotid canal course for main anthropoid clades. Our results reveal that carotid canal morphology embeds strong phylogenetic signal but mostly discriminates between platyrrhines and catarrhines, with an extensive overlap among extant catarrhine families. The analyzed extinct taxa display a quite similar carotid canal morphology more closely resembling that of extant catarrhines. Nevertheless, our results for Pliobates highlight some differences compared with the pliopithecid Epipliopithecus, which displays a somewhat more platyrrhine-like morphology. In contrast, Pliobates appears as derived toward the modern catarrhine condition as the stem cercopithecid Victoriapithecus and the stem hominoid Ekembo, which more closely resemble one another. Moreover, Pliobates appears somewhat derived toward the reconstructed ancestral hominoid morphotype, being more similar than other Miocene catarrhines to the condition of great apes and the hylobatid Symphalangus. Overall, our results rule out previously noted similarities in carotid canal morphology between Pliobates and hylobatids, but do not show particular similarities with pliopithecoids either-as opposed to extant and other extinct catarrhines. Additional analyses will be required to clarify the phylogenetic relationships of Pliobates, particularly given its dental similarities with dendropithecids.


Subject(s)
Fossils , Hominidae , Anatomy, Comparative , Animals , Biological Evolution , Haplorhini , Humans , Phylogeny
13.
J Hum Evol ; 157: 103032, 2021 08.
Article in English | MEDLINE | ID: mdl-34233242

ABSTRACT

Pliopithecoids are a diverse group of Miocene catarrhine primates from Eurasia. Their positional behavior is still unknown, and many species are known exclusively from dentognathic remains. Here, we describe a proximal radius (IPS66267) from the late Miocene of Castell de Barberà (Vallès-Penedès Basin, NE Iberian Peninsula) that represents the first postcranial specimen of the pliopithecoid Barberapithecus huerzeleri. A body mass estimate based on the radius is compared with dental estimates, and its morphology is compared with that of extant and fossil anthropoids by qualitative means as well as by landmark-based three-dimensional geometric morphometrics. The estimated body mass of ∼5 kg for IPS66267 closely matches the dental estimates for the (female) holotype, thereby discounting an alternative attribution to the large-bodied hominoid recorded at Castell de Barberà. In multiple features (oval and moderately tilted head with a pronounced lateral lip and a restricted articular area for the capitulum; proximodistally expanded proximal radioulnar joint; and short, robust, and anteroposteriorly compressed neck), the specimen differs from hominoids and resembles instead extant nonateline monkeys and stem catarrhines. The results of the morphometric analysis further indicate that the Barberapithecus proximal radius shows closer similarities with nonsuspensory arboreal cercopithecoids and the dendropithecid Simiolus. From a locomotor viewpoint, the radius of Barberapithecus lacks most of the features functionally related to climbing and/or suspensory behaviors and displays instead a proximal radioulnar joint that would have been particularly stable under pronation. On the other hand, the Barberapithecus radius differs from other stem catarrhines in the less anteroposteriorly compressed and less tilted radial head with a deeper capitular fovea, suggesting a somewhat enhanced mobility at the elbow joint. We conclude that pronograde arboreal quadrupedalism was the main component of the locomotor repertoire of Barberapithecus but that, similar to other crouzeliids, it might have displayed better climbing abilities than pliopithecids.


Subject(s)
Catarrhini/anatomy & histology , Fossils , Locomotion , Radius/anatomy & histology , Animals , Female , Male
14.
J Hum Evol ; 136: 102651, 2019 11.
Article in English | MEDLINE | ID: mdl-31542562

ABSTRACT

Only a few postcranial remains have been assigned to the Miocene great ape Dryopithecus fontani, leading to uncertainties in the reconstruction of its overall body plan and positional behavior. Here we shed light on the locomotor repertoire of this species through the study of the femoral neck cortical bone (FNCB) distribution of IPS41724, a partial proximal femur from the Abocador de Can Mata locality ACM/C3-Az (11.9 Ma, middle Miocene; Vallès-Penedès Basin, Spain) attributed to this taxon. This specimen was scanned through computed tomography to measure the superior (SUP) and inferior (INF) cortical thicknesses at the middle and the base of the femoral neck. Measurements were compared with a sample of extant primates and the femur IPS18800.29 from the younger great ape Hispanopithecus laietanus from Can Llobateres 2 (9.6 Ma, late Miocene; Vallès-Penedès Basin), previously shown to display a homogeneous FNCB distribution at the midneck section coupled with postcranial adaptations to below-branch suspensory behaviors. Our analyses indicate an asymmetric FNCB distribution for IPS41724 (SUP/INF index = âˆ¼0.4 at the midneck and base of the neck sections), comparable with that of quadrupedal primates and bipedal hominins (including early australopiths), but contrasting with the homogeneous FNCB distribution of Hispanopithecus and extant great apes. An asymmetrical FNCB distribution has been associated with stereotyped loads at the hip joint (as in both quadrupedal and bipedal taxa). Our results therefore support a significant quadrupedal component of the positional behavior of Dryopithecus, thus strengthening the argument that plesiomorphic generalized quadrupedalism was still a major locomotor behavior for Miocene great apes. If that were the case, it could have deep implications for the origins of hominin bipedalism.


Subject(s)
Biological Evolution , Cortical Bone/anatomy & histology , Femur Neck/anatomy & histology , Fossils/anatomy & histology , Hominidae , Locomotion , Animals , Hominidae/anatomy & histology , Hominidae/physiology , Spain
15.
J Hum Evol ; 133: 114-132, 2019 08.
Article in English | MEDLINE | ID: mdl-31358175

ABSTRACT

Fossil evidence indicates that numerous catarrhine clades of African origin expanded or shifted their ranges into Eurasia, among them macaques Macaca Lacépède, 1799. Macaques represent the sister taxon of African papionins and can thus be used as a model comparing an 'out-of-Africa' with an intra-African, e.g., baboons-Papio Erxleben, 1777 evolutionary history. The first step for such a comparison is to establish a well-resolved phylogeny of macaques with reliably estimated divergence times and to compare it with that of baboons and the fossil record. Therefore, we used mitochondrial (mtDNA) genome data deposited in GenBank of 16 out of 23 extant macaque species and of all six baboon taxa. We reconstructed phylogenetic trees using maximum-likelihood and Bayesian inferences and dated differentiation events using three fossil-based calibration sets. The obtained tree topology is in agreement with findings from earlier mtDNA studies, but yielded stronger nodal supports. We observed some para- and polyphylies in macaques and baboons, suggesting that ancient gene flow among divergent lineages has been common in both genera. Our divergence time estimates are in broad agreement with earlier findings and with the fossil record. Macaques started to diversify 7.0-6.7 Ma, followed by a stepwise radiation into several species groups in Asia, whereas baboons commenced diversification around 2.2 Ma. Accordingly, divergence of species groups and species in macaques clearly predates divergences in baboons. Based on our phylogenetic results with estimated divergence times and the recorded chronostratigraphic ranges of extinct macaque and baboon taxa, we compare the evolutionary radiations of both genera from paleobiogeographic and adaptive viewpoints.


Subject(s)
Biological Evolution , DNA, Mitochondrial/analysis , Genome, Mitochondrial , Macaca/genetics , Phylogeny , Animals , Evolution, Molecular , Fossils
16.
J Hum Evol ; 132: 32-46, 2019 07.
Article in English | MEDLINE | ID: mdl-31203850

ABSTRACT

Castell de Barberà, located in the Vallès-Penedès Basin (NE Iberian Peninsula), is one of the few European sites where pliopithecoids (Barberapithecus) and hominoids (cf. Dryopithecus) co-occur. The dating of this Miocene site has proven controversial. A latest Aragonian (MN7+8, ca. 11.88-11.18 Ma) age was long accepted by most authors, despite subsequent reports of hipparionin remains that signaled a Vallesian age. On the latter basis, Castell de Barberà was recently correlated to the early Vallesian (MN9, ca. 11.18-10.3 Ma) on tentative grounds. Uncertainties about the provenance of the Hippotherium material and the lack of magnetostratigraphic data precluded more accurate dating. After decades of inactivity, fieldwork was resumed in 2014-2015 at Castell de Barberà, including the original layer (CB-D) that previously delivered most of the fossils. Here we report magnetostratigraphic results for the original outcrop and another nearby section. Our results indicate that CB-D is located in a normal polarity magnetozone in the middle of a short (∼20 m-thick) stratigraphic section. The composite magnetostratigraphic section (∼50 m) has as many as four to six magnetozones. These multiple reversals, coupled with the in situ recovery of a Hippotherium humerus from CB-D in 2015, make it unlikely that any of the sampled normal polarity magnetozones correlate with the long normal polarity subchron C5n.2n (11.056-9.984 Ma), which is characteristic of the early Vallesian. Our results support instead a correlation of CB-D with C5r.1n (11.188-11.146 Ma), where the Aragonian/Vallesian boundary is situated, and therefore indicate an earliest Vallesian age of ∼11.2 Ma for Castell de Barberà. Our results settle the longstanding debate about the Aragonian vs. Vallesian age of this site, which appears roughly coeval with the Creu de Conill 20 locality (11.18 Ma), where hipparionins are first recorded in the Vallès-Penedès Basin.


Subject(s)
Biological Evolution , Fossils , Geologic Sediments/analysis , Primates , Animals , Spain
18.
J Hum Evol ; 174: 103306, 2023 01.
Article in English | MEDLINE | ID: mdl-36516733

Subject(s)
Fossils
19.
J Hum Evol ; 123: 141-147, 2018 10.
Article in English | MEDLINE | ID: mdl-30139554

ABSTRACT

Macaques dispersed out of Africa into Eurasia in the framework of a broader intercontinental faunal exchange that coincided in time with the sea level drop associated with the Messinian Salinity Crisis. They are first recorded in Europe (Italy and Spain) by the latest Miocene, being subsequently recorded all over Europe, albeit sparsely, throughout the Pliocene and Pleistocene. These fossil European macaques are attributed to several (sub)species of the extant Barbary macaque (Macaca sylvanus). In Iberia, fossil macaques are best documented by Macaca sylvanus florentina from various Early Pleistocene sites, whereas their published Pliocene record is very scarce. Here we report the oldest post-Messinian occurrence of macaques in the Iberian Peninsula, based on the description and metrical comparisons of two upper teeth (a male canine and a third molar of two different individuals) from the early Pliocene (MN14, 5.0-4.9 Ma) site of Puerto de la Cadena (Murcia, SE Spain). The male C1 is fully comparable in morphology with those of extant and fossil M. sylvanus, and larger than those of Mesopithecus. The M3, in turn, displays the typical papionin morphology that characterizes the dentally-conservative genus Macaca-thereby discounting an alternate assignment to either the extinct colobine monkey Mesopithecus or the more dentally-derived papionin Theropithecus. Dental size and proportions of the M3 further support an attribution to an extinct subspecies of M. sylvanus instead of the larger papionin Paradolichopithecus. Mostly on biochronologic grounds, the two macaque teeth from Puerto de la Cadena are here assigned to Macaca sylvanus cf. prisca, albeit tentatively, given the lack of clear-cut criteria to distinguish this subspecies from the younger Macaca sylvanus florentina. The described material represents the oldest well-dated Pliocene record of macaques in Iberia, predating the record of Paradolichopithecus by almost 1.5 million years.


Subject(s)
Fossils/anatomy & histology , Macaca/anatomy & histology , Animals , Cuspid/anatomy & histology , Macaca/classification , Male , Molar/anatomy & histology , Spain
SELECTION OF CITATIONS
SEARCH DETAIL