Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(2): e2211974120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595684

ABSTRACT

Landscape dynamics are widely thought to govern the tempo and mode of continental radiations, yet the effects of river network rearrangements on dispersal and lineage diversification remain poorly understood. We integrated an unprecedented occurrence dataset of 4,967 species with a newly compiled, time-calibrated phylogeny of South American freshwater fishes-the most species-rich continental vertebrate fauna on Earth-to track the evolutionary processes associated with hydrogeographic events over 100 Ma. Net lineage diversification was heterogeneous through time, across space, and among clades. Five abrupt shifts in net diversification rates occurred during the Paleogene and Miocene (between 30 and 7 Ma) in association with major landscape evolution events. Net diversification accelerated from the Miocene to the Recent (c. 20 to 0 Ma), with Western Amazonia having the highest rates of in situ diversification, which led to it being an important source of species dispersing to other regions. All regional biotic interchanges were associated with documented hydrogeographic events and the formation of biogeographic corridors, including the Early Miocene (c. 23 to 16 Ma) uplift of the Serra do Mar and Serra da Mantiqueira and the Late Miocene (c. 10 Ma) uplift of the Northern Andes and associated formation of the modern transcontinental Amazon River. The combination of high diversification rates and extensive biotic interchange associated with Western Amazonia yielded its extraordinary contemporary richness and phylogenetic endemism. Our results support the hypothesis that landscape dynamics, which shaped the history of drainage basin connections, strongly affected the assembly and diversification of basin-wide fish faunas.


Subject(s)
Fishes , Fresh Water , Animals , Phylogeny , Fishes/genetics , Rivers , South America , Biodiversity , Phylogeography
2.
Crit Care Med ; 49(5): 760-769, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33590996

ABSTRACT

OBJECTIVE: Management of patients experiencing massive pulmonary embolism-related cardiac arrest is controversial. Venoarterial extracorporeal membranous oxygenation has emerged as a potential therapeutic option for these patients. We performed a systematic review assessing survival and predictors of mortality in patients with massive PE-related cardiac arrest with venoarterial extracorporeal membranous oxygenation use. DATA SOURCES: A literature search was started on February 16, 2020, and completed on March 16, 2020, using PubMed, Embase, Cochrane Central, Cinahl, and Web of Science. STUDY SELECTION: We included all available literature that reported survival to discharge in patients managed with venoarterial extracorporeal membranous oxygenation for massive PE-related cardiac arrest. DATA EXTRACTION: We extracted patient characteristics, treatment details, and outcomes. DATA SYNTHESIS: About 301 patients were included in our systemic review from 77 selected articles (total screened, n = 1,115). About 183 out of 301 patients (61%) survived to discharge. Patients (n = 51) who received systemic thrombolysis prior to cannulation had similar survival compared with patients who did not (67% vs 61%, respectively; p = 0.48). There was no significant difference in risk of death if PE was the primary reason for admission or not (odds ratio, 1.62; p = 0.35) and if extracorporeal membranous oxygenation cannulation occurred in the emergency department versus other hospital locations (odds ratio, 2.52; p = 0.16). About 53 of 60 patients (88%) were neurologically intact at discharge or follow-up. Multivariate analysis demonstrated three-fold increase in the risk of death for patients greater than 65 years old (adjusted odds ratio, 3.08; p = 0.03) and six-fold increase if cannulation occurred during cardiopulmonary resuscitation (adjusted odds ratio, 5.67; p = 0.03). CONCLUSIONS: Venoarterial extracorporeal membranous oxygenation has an emerging role in the management of massive PE-related cardiac arrest with 61% survival. Systemic thrombolysis preceding venoarterial extracorporeal membranous oxygenation did not confer a statistically significant increase in risk of death, yet age greater than 65 and cannulation during cardiopulmonary resuscitation were associated with a three- and six-fold risks of death, respectively.


Subject(s)
Cardiopulmonary Resuscitation/methods , Extracorporeal Membrane Oxygenation/methods , Heart Arrest/therapy , Pulmonary Embolism/therapy , Cardiopulmonary Resuscitation/mortality , Extracorporeal Membrane Oxygenation/mortality , Heart Arrest/complications , Heart Arrest/mortality , Humans , Patient Discharge/statistics & numerical data , Pulmonary Embolism/etiology , Pulmonary Embolism/mortality , Risk Factors , Survival Rate
3.
Syst Biol ; 68(4): 573-593, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30521024

ABSTRACT

Resolving patterns of ancient and rapid diversifications is one of the most challenging tasks in evolutionary biology. These difficulties arise from confusing phylogenetic signals that are associated with the interplay of incomplete lineage sorting (ILS) and homoplasy. Phylogenomic analyses of hundreds, or even thousands, of loci offer the potential to resolve such contentious relationships. Yet, how much useful phylogenetic information these large data sets contain remains uncertain and often goes untested. Here, we assess the utility of different data filtering approaches to maximize phylogenetic information and minimize noise when reconstructing an ancient radiation of Neotropical electric knifefishes (Order Gymnotiformes) using ultraconserved elements. We found two contrasting hypotheses of gymnotiform evolutionary relationships depending on whether phylogenetic inferences were based on concatenation or coalescent methods. In the first case, all analyses inferred a previously-and commonly-proposed hypothesis, where the family Apteronotidae was found as the sister group to all other gymnotiform families. In contrast, coalescent-based analyses suggested a novel hypothesis where families producing pulse-type (viz., Gymnotidae, Hypopomidae, and Rhamphichthyidae) and wave-type electric signals (viz., Apteronotidae, Sternopygidae) were reciprocally monophyletic. Nodal support for this second hypothesis increased when analyzing loci with the highest phylogenetic information content and further increased when data were pruned using targeted filtering methods that maximized phylogenetic informativeness at the deepest nodes of the Gymnotiformes. Bayesian concordance analyses and topology tests of individual gene genealogies demonstrated that the difficulty of resolving this radiation was likely due to high gene-tree incongruences that resulted from ILS. We show that data filtering reduces gene-tree heterogeneity and increases nodal support and consistency of species trees using coalescent methods; however, we failed to observe the same effect when using concatenation methods. Furthermore, the targeted filtering strategies applied here support the use of "gene data interrogation" rather than "gene genealogy interrogation" approaches in phylogenomic analyses, to extract phylogenetic signal from intractable portions of the Tree of Life.


Subject(s)
Classification/methods , Gymnotiformes/classification , Phylogeny , Animals , Conserved Sequence/genetics , Gymnotiformes/genetics
4.
Transpl Infect Dis ; 22(6): e13364, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32521074

ABSTRACT

Solid organ transplant recipients are considered at high risk for COVID-19 infection due to chronic immune suppression; little data currently exists on the manifestations and outcomes of COVID-19 infection in lung transplant recipients. Here we report 8 cases of COVID-19 identified in patients with a history of lung transplant. We describe the clinical course of disease as well as preexisting characteristics of these patients.


Subject(s)
COVID-19/physiopathology , Cross Infection/physiopathology , Immunosuppressive Agents/therapeutic use , Lung Transplantation , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adult , Aged , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/diagnostic imaging , COVID-19/immunology , COVID-19/therapy , Cough/physiopathology , Cross Infection/diagnostic imaging , Cross Infection/immunology , Cross Infection/therapy , Cystic Fibrosis/surgery , Dyspnea/physiopathology , Female , Fever/physiopathology , Gastrointestinal Diseases/physiopathology , Glucocorticoids/therapeutic use , Graft Rejection/prevention & control , Humans , Idiopathic Pulmonary Fibrosis/surgery , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Lung/diagnostic imaging , Male , Methylprednisolone/therapeutic use , Middle Aged , Pancreatitis, Acute Necrotizing , Pulmonary Disease, Chronic Obstructive/surgery , Pulse Therapy, Drug , SARS-CoV-2 , Sepsis , Severity of Illness Index , Tomography, X-Ray Computed
5.
Mol Phylogenet Evol ; 135: 297-307, 2019 06.
Article in English | MEDLINE | ID: mdl-30844446

ABSTRACT

Ghost knifefishes (Gymnotiformes: Apteronotidae) are weakly electric fishes that possess a high-frequency, neurogenic electric organ discharge. They are found throughout the humid Neotropics from Panama to Argentina and are most diverse and abundant in the channels of large lowland rivers. Apteronotidae is the most species-rich family of Neotropical electric knifefishes with 96 valid species in 15 genera. We present a phylogenetic hypothesis based on molecular sequence data from three mitochondrial genes (16S, coi, cytb) and four nuclear loci (glyt, rag2, ryr3, zic1). Our analysis includes sequence data for 203 samples in 54 species and 14 genera, making it the most densely-sampled and data-rich phylogeny of the Apteronotidae to date. Our results corroborate previous phylogenetic hypotheses with the placement of Orthosternarchus + Sternarchorhamphus sister to all other apteronotids, a non-monophyletic Apterontotus, and a sister relationship between Sternarchorhynchus and the Navajini. We also report several novel relationships, particularly within the Navajini and among several species of the nominal genus Apteronotus not previously included in phylogenetic analyses. We additionally provide a new classification for the family.


Subject(s)
Gymnotiformes/classification , Gymnotiformes/genetics , Phylogeny , Animals , Argentina , Bayes Theorem , Genetic Markers , Likelihood Functions , Panama , Species Specificity
6.
Mol Phylogenet Evol ; 135: 148-165, 2019 06.
Article in English | MEDLINE | ID: mdl-30802595

ABSTRACT

Neotropical freshwaters host more than 6000 fish species, of which 983 are suckermouth armored catfishes of the family Loricariidae - the most-diverse catfish family and fifth most species-rich vertebrate family on Earth. Given their diversity and ubiquitous distribution across many habitat types, loricariids are an excellent system in which to investigate factors that create and maintain Neotropical fish diversity, yet robust phylogenies needed to support such ecological and evolutionary studies are lacking. We sought to buttress the systematic understanding of loricariid catfishes by generating a genome-scale data set (1041 loci, 328,330 bp) for 140 species spanning 75 genera and five of six previously proposed subfamilies. Both maximum likelihood and Bayesian analyses strongly supported the monophyly of Loricariidae. Our results also reinforced the established backbone of loricariid interrelationships: Delturinae as sister to all other analyzed loricariids, with subfamily Rhinelepinae diverging next, followed by Loricariinae sister to Hypostominae + Hypoptopomatinae. Previous DNA-based relationships within Hypostominae and Loricariinae were strongly supported. However, we evaluated for the first time DNA-based relationships among many Hypoptopomatinae genera and found significant differences with this subfamily's current genus-level classification, prompting several taxonomic changes. Finally, we placed our topological results within a fossil-calibrated temporal context indicating that early Loricariidae diversification occurred across the Cretaceous-Paleogene boundary ∼65 million years ago (Ma). Our study lays a strong foundation for future research to focus on relationships among species and the macroevolutionary processes affecting loricariid diversification rates and patterns.


Subject(s)
Catfishes/classification , Catfishes/genetics , Conserved Sequence , Phylogeny , Animals , Base Sequence , Bayes Theorem , Calibration , Conserved Sequence/genetics , Ecosystem , Likelihood Functions , Sequence Analysis, DNA , Species Specificity , Time Factors
7.
Syst Biol ; 66(2): 183-196, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-26370565

ABSTRACT

We document patterns of coordinated dispersal over evolutionary time frames in heroine cichlids and poeciliine live-bearers, the two most species-rich clades of freshwater fishes in the Caribbean basin. Observed dispersal rate (DO) values were estimated from time-calibrated molecular phylogenies in Lagrange+, a modified version of the ML-based parametric biogeographic program Lagrange. DO is measured in units of "wallaces" (wa) as the number of biogeographic range-expansion events per million years. DO estimates were generated on a dynamic paleogeographic landscape of five areas over three time intervals from Upper Cretaceous to Recent. Expected dispersal rate (DE) values were generated from alternative paleogeographic models, with dispersal rates proportional to target area and source-river discharge volume, and inversely proportional to paleogeographic distance. Correlations between DO and DE were used to assess the relative contributions of these three biogeographic parameters. DO estimates imply a persistent dispersal corridor across the Eastern (Antillean) margin of the Caribbean plate, under the influence of prevailing and perennial riverine discharge vectors such as the Proto-Orinoco-Amazon river. Ancestral area estimation places the earliest colonizations of the Greater Antilles and Central America during the Paleocene-Eocene (ca. 58-45 Ma), potentially during the existence of an incomplete Paleogene Arc (∼59 Ma) or Lesser Antilles Arc (∼45 Ma), but predating the GAARlandia land bridge (∼34-33 Ma). Paleogeographic distance is the single best predictor of DO. The Western (Central American) plate margin did not serve as a dispersal corridor until the Late Neogene (12-0 Ma), and contributed relatively little to the formation of modern distributions.


Subject(s)
Animal Distribution , Biological Evolution , Fishes/classification , Animals , Caribbean Region , Central America , Fishes/physiology , Fresh Water , Phylogeny , Sequence Analysis, DNA , Software
8.
Syst Biol ; 66(2): 167-182, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27590192

ABSTRACT

Macroevolutionary theory posits three processes leading to lineage diversification and the formation of regional biotas: dispersal (species geographic range expansion), speciation (species lineage splitting), and extinction (species lineage termination). The Theory of Island Biogeography (TIB) predicts species richness values using just two of these processes; dispersal and extinction. Yet most species on Earth live on continents or continental shelves, and the dynamics of evolutionary diversification at regional and continental scales are qualitatively different from those that govern the formation of species richness on biogeographic islands. Certain geomorphological processes operating perennially on continental platforms displace barriers to gene flow and organismal dispersal, and affect all three terms of macroevolutionary diversification. For example, uplift of a dissected landscape and river capture both merge and separate portions of adjacent areas, allowing dispersal and larger geographic ranges, vicariant speciation and smaller geographic ranges, and extinction when range sizes are subdivided below a minimum persistence threshold. The TIB also does not predict many biogeographic and phylogenetic patterns widely observed in continentally distributed taxa, including: (i) power function-like species-area relationships; (ii) log-normal distribution of species geographic range sizes, in which most species have restricted ranges (are endemic) and few species have broad ranges (are cosmopolitan); (iii) mid-domain effects with more species toward the geographic center, and more early-branching, species-poor clades toward the geographic periphery; (iv) exponential rates of net diversification with log-linear accumulation of lineages through geological time; and (v) power function-like relationships between species-richness and clade diversity, in which most clades are species-poor and few clades are species-rich. Current theory does not provide a robust mechanistic framework to connect these seemingly disparate patterns. Here we present SEAMLESS (Spatially Explicit Area Model of Landscape Evolution by SimulationS) that generates clade diversification by moving geographic barriers on a continuous, neutral landscape. SEAMLESS is a neutral Landscape Evolution Model (LEM) that treats species and barriers as functionally equivalent with respect to model parameters. SEAMLESS differs from other model-based biogeographic methods (e.g., Lagrange, GeoSSE, BayArea, and BioGeoBEARS) by modeling properties of dispersal barriers rather than areas, and by modeling the evolution of species lineages on a continuous landscape, rather than the evolution of geographic ranges along branches of a phylogeny. SEAMLESS shows how dispersal is required to maintain species richness and avoid clade-wide extinction, demonstrates that ancestral range size does not predict species richness, and provides a unified explanation for the suite of commonly observed biogeographic and phylogenetic patterns listed above. SEAMLESS explains how a simple barrier-displacement mechanism affects lineage diversification under neutral conditions, and is advanced here toward the formulation of a general theory of continental biogeography. [Diversification, extinction, geodispersal, macroevolution, river capture, vicariance.].


Subject(s)
Biological Evolution , Genetic Speciation , Models, Biological , Biodiversity , Computer Simulation , Phylogeny
9.
Syst Biol ; 66(6): 881-895, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28334176

ABSTRACT

Ostariophysi is a superorder of bony fishes including more than 10,300 species in 1100 genera and 70 families. This superorder is traditionally divided into five major groups (orders): Gonorynchiformes (milkfishes and sandfishes), Cypriniformes (carps and minnows), Characiformes (tetras and their allies), Siluriformes (catfishes), and Gymnotiformes (electric knifefishes). Unambiguous resolution of the relationships among these lineages remains elusive, with previous molecular and morphological analyses failing to produce a consensus phylogeny. In this study, we use over 350 ultraconserved element (UCEs) loci comprising 5 million base pairs collected across 35 representative ostariophysan species to compile one of the most data-rich phylogenies of fishes to date. We use these data to infer higher level (interordinal) relationships among ostariophysan fishes, focusing on the monophyly of the Characiformes-one of the most contentiously debated groups in fish systematics. As with most previous molecular studies, we recover a non-monophyletic Characiformes with the two monophyletic suborders, Citharinoidei and Characoidei, more closely related to other ostariophysan clades than to each other. We also explore incongruence between results from different UCE data sets, issues of orthology, and the use of morphological characters in combination with our molecular data. [Conserved sequence; ichthyology; massively parallel sequencing; morphology; next-generation sequencing; UCEs.].


Subject(s)
Characiformes/classification , Characiformes/genetics , Conserved Sequence/genetics , Phylogeny , Animals
10.
Proc Natl Acad Sci U S A ; 112(31): 9573-8, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26195769

ABSTRACT

Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress-strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks.


Subject(s)
Collagen Type I/chemistry , Stress, Mechanical , Biomechanical Phenomena , Models, Biological
11.
Mol Phylogenet Evol ; 95: 20-33, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26616344

ABSTRACT

This study provides the most comprehensive Model-Based Total Evidence (MBTE) phylogenetic analyses of the clade Gymnotiformes to date, reappraising relationships using a dataset comprised of six genes (5277bp) and 223 morphological characters, and an ingroup taxon sample including 120 of 212 valid species representing 34 of the 35 extant genera. Our MBTE analyses indicate the two main gymnotiform clades are Gymnotidae and Sternopygoidei, the latter comprised of Rhamphichthyoidea (Rhamphichthyidae+Hypopomidae) and Sinusoidea (Sternopygidae+Apteronotidae). Within Gymnotidae, Electrophorus and Gymnotus are sister taxa, and Gymnotus includes the following six clades: (i) G. pantherinus clade, (ii) G. coatesi clade, (iii) G. anguillaris clade, (iv) G. tigre clade, (v) G. cylindricus clade, and (vi) G. carapo clade. Within Rhamphichthyoidea, Steatogenae (Steatogenys+Hypopygus) is a member of Rhamphichthyidae, and Hypopomidae includes the following clades: (i) Akawaio, (ii) Hypopomus, (iii) Microsternarchini, and (iv) Brachyhypopomus. Within Sternopygidae, Sternopygus and Eigenmanninae are sister groups, Rhabdolichops is the sister to other Eigenmanninae, Archolaemus+Distocyclus is the sister to Eigenmannia, and Japigny is nested within Eigenmannia. Within Apteronotidae, Sternarchorhamphinae (Sternarchorhamphus+Orthosternarchus) is the sister to Apteronotinae, Adontosternarchus is the sister group to other Apteronotinae, Sternarchorhynchini (Sternarchorhynchus+Platyurosternarchus) is the sister to Navajini, and species assigned to Apteronotus are members of two separate clades: (i) A. sensu stricto in the Apteronotini, and (ii) the "A." bonapartii clade in the Navajini.


Subject(s)
Gymnotiformes/classification , Gymnotiformes/genetics , Models, Genetic , Phylogeny , Animals , Mutation, Missense , Polymorphism, Single Nucleotide , Selection, Genetic , Tropical Climate
12.
Soft Matter ; 12(22): 5050-60, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27174568

ABSTRACT

We present theoretical and experimental studies of the elastic response of fibrous networks subjected to uniaxial strain. Uniaxial compression or extension is applied to extracellular networks of fibrin and collagen using a shear rheometer with free water in/outflow. Both uniaxial stress and the network shear modulus are measured. Prior work [van Oosten, et al., Sci. Rep., 2015, 6, 19270] has shown softening/stiffening of these networks under compression/extension, together with a nonlinear response to shear, but the origin of such behaviour remains poorly understood. Here, we study how uniaxial strain influences the nonlinear mechanics of fibrous networks. Using a computational network model with bendable and stretchable fibres, we show that the softening/stiffening behaviour can be understood for fixed lateral boundaries in 2D and 3D networks with comparable average connectivities to the experimental extracellular networks. Moreover, we show that the onset of stiffening depends strongly on the imposed uniaxial strain. Our study highlights the importance of both uniaxial strain and boundary conditions in determining the mechanical response of hydrogels.

13.
BMC Genomics ; 16: 243, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25887781

ABSTRACT

BACKGROUND: With its unique ability to produce high-voltage electric discharges in excess of 600 volts, the South American strong voltage electric eel (Electrophorus electricus) has played an important role in the history of science. Remarkably little is understood about the molecular nature of its electric organs. RESULTS: We present an in-depth analysis of the genome of E. electricus, including the transcriptomes of eight mature tissues: brain, spinal cord, kidney, heart, skeletal muscle, Sachs' electric organ, main electric organ, and Hunter's electric organ. A gene set enrichment analysis based on gene ontology reveals enriched functions in all three electric organs related to transmembrane transport, androgen binding, and signaling. This study also represents the first analysis of miRNA in electric fish. It identified a number of miRNAs displaying electric organ-specific expression patterns, including one novel miRNA highly over-expressed in all three electric organs of E. electricus. All three electric organ tissues also express three conserved miRNAs that have been reported to inhibit muscle development in mammals, suggesting that miRNA-dependent regulation of gene expression might play an important role in specifying an electric organ identity from its muscle precursor. These miRNA data were supported using another complete miRNA profile from muscle and electric organ tissues of a second gymnotiform species. CONCLUSIONS: Our work on the E. electricus genome and eight tissue-specific gene expression profiles will greatly facilitate future research on determining the coding and regulatory sequences that specify the function, development, and evolution of electric organs. Moreover, these data and future studies will be informed by the first comprehensive analysis of miRNA expression in an electric fish presented here.


Subject(s)
Electric Organ/metabolism , Electrophorus/metabolism , MicroRNAs/metabolism , RNA, Messenger/metabolism , Transcriptome , Animals , Electrophorus/genetics , MicroRNAs/genetics , South America
14.
Cladistics ; 31(2): 177-188, 2015 Apr.
Article in English | MEDLINE | ID: mdl-34758579

ABSTRACT

Although attempts to understand Central American freshwater fish provincialism date to the 1960s, early efforts lacked the wealth of distributional data now available. Biogeographic work on Central American freshwater fishes has been largely descriptive and regional, and lacked a broader synthesis. Here we use parsimony analysis of endemicity (PAE) to elucidate faunistic relationships between major drainages and to delineate areas of endemism. We then perform a Brooks parsimony analysis (BPA) on the resulting areas. The PAE recovered a primary division between four Pacific and six Atlantic slope areas of endemism. In contrast, the BPA recovered two Central American geographic clades, one sharing a history with North America and the other with South America. Fish diversity is uneven across Central America, with greater diversity in areas adjacent to the more species-rich regions of North and South America. In northern and nuclear Central America, the paucity of ostariophysan freshwater fishes such as catfishes and characins (groups that dominate adjacent regions) contrasts with high species richness of poeciliids and cichlids. Results of this study are consistent with Myer's hypothesis that poeciliids and cichlids dispersed to Northern or Nuclear Middle America early in the Cenozoic, long before the Plio-Pleistocene rise of the Isthmus of Panama.

16.
Innovation (Camb) ; 4(3): 100417, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37091911

ABSTRACT

Documenting the origins of megadiverse (sub)tropical aquatic ecosystems is an important goal for studies of evolution and ecology. Nonetheless, the geological and ecological establishment of the modern Yangtze River remains poorly understood. Here, we reconstruct the geographic and ecological history of an endemic clade of East Asian fishes based on the mitochondrial phylogenomics analysis of Cyprinidae using 15 fossil calibrations. We estimate an ancestral condition of benthic spawning with demersal or adhesive eggs in southern East Asia before ∼23 Ma and a derived condition of riverine spawning with semibuoyant eggs in the Yangtze by ∼18 Ma. These results imply the formation of Yangtze riverine ecosystems around the Oligocene-Miocene boundary in response to plateau uplift and monsoon strengthening. Some of these cyprinids reverted to benthic spawning with adhesive eggs by ∼15 Ma, a time of rising to peak net diversification rates, indicating the formation of potamo-lacustrine ecosystems by the mid-Miocene during a strong East Asian summer monsoon. Our study provides increased spatiotemporal resolution for the co-evolutionary histories of the Yangtze River and its biodiversity and highlights biological evidence concerning the geomorphological dynamics of the Yangtze River.

17.
Sci Rep ; 13(1): 20758, 2023 11 25.
Article in English | MEDLINE | ID: mdl-38007528

ABSTRACT

Body shape is a fundamental metric of animal diversity affecting critical behavioral and ecological dynamics and conservation status, yet previously available methods capture only a fraction of total body-shape variance. Here we use structure-from-motion (SFM) 3D photogrammetry to generate digital 3D models of adult fishes from the Lower Mississippi Basin, one of the most diverse temperate-zone freshwater faunas on Earth, and 3D geometric morphometrics to capture morphologically distinct shape variables, interpreting principal components as growth fields. The mean body shape in this fauna resembles plesiomorphic teleost fishes, and the major dimensions of body-shape disparity are similar to those of other fish faunas worldwide. Major patterns of body-shape disparity are structured by phylogeny, with nested clades occupying distinct portions of the morphospace, most of the morphospace occupied by multiple distinct clades, and one clade (Acanthomorpha) accounting for over half of the total body shape variance. In contrast to previous studies, variance in body depth (59.4%) structures overall body-shape disparity more than does length (31.1%), while width accounts for a non-trivial (9.5%) amount of the total body-shape disparity.


Subject(s)
Fishes , Somatotypes , Animals , Phylogeny , Body Weights and Measures , Principal Component Analysis , Biological Evolution
18.
Nat Commun ; 14(1): 6070, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770447

ABSTRACT

Speciation rates vary greatly among taxa and regions and are shaped by both biotic and abiotic factors. However, the relative importance and interactions of these factors are not well understood. Here we investigate the potential drivers of speciation rates in South American freshwater fishes, the most diverse continental vertebrate fauna, by examining the roles of multiple biotic and abiotic factors. We integrate a dataset on species geographic distribution, phylogenetic, morphological, climatic, and habitat data. We find that Late Neogene-Quaternary speciation events are strongly associated with body-size evolution, particularly in lineages with small body sizes that inhabit higher elevations near the continental periphery. Conversely, the effects of temperature, area, and diversity-dependence, often thought to facilitate speciation, are negligible. By evaluating multiple factors simultaneously, we demonstrate that habitat characteristics associated with elevation, as well as body size evolution, correlate with rapid speciation in South American freshwater fishes. Our study emphasizes the importance of integrative approaches that consider the interplay of biotic and abiotic factors in generating macroecological patterns of species diversity.


Subject(s)
Biodiversity , Fishes , Animals , Phylogeny , Ecosystem , Fresh Water , Body Size , South America , Genetic Speciation
19.
JTCVS Open ; 13: 1-8, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37063158

ABSTRACT

Background: Contemporary series of aortic arch replacement at the time of aortic root surgery are limited in number of patients and mostly address hemiarch replacement. We describe outcomes after aortic root and concomitant arch replacement, including total arch replacement. Methods: This single-institution retrospective review studied 1196 consecutive patients from May 2004 to September 2020 who underwent first-time aortic root replacement. Patients undergoing surgery for endocarditis were excluded (n = 68, 5.7%). Patients undergoing concomitant root and arch replacement were propensity matched with patients undergoing isolated root surgery based on indication, clinical and operative characteristics, demographics, medical history including connective tissue disorders, and urgency. Multivariable Cox proportional hazards and logistic regression modeling were used to assess the primary outcome of all-cause mortality and the secondary outcomes of prolonged ventilator use, postoperative blood transfusion, and debilitating stroke, adjusted for patient and operative characteristics. Results: Among the 1128 patients who underwent aortic root intervention during the study period, 471 (41.8%) underwent concomitant aortic arch replacement. Most underwent hemiarch replacement (n = 411, 87.4%); 59 patients (12.6%) underwent total arch replacement (with elephant trunk: n = 23, 4.9%; without elephant trunk: n = 36, 7.7%). The mean follow-up time was 4.6 years postprocedure. Operative mortality was 2.2%, and total mortality over the entire study period was 9.2%. Propensity matching generated 348 matches (295 concomitant hemiarch, 53 concomitant total arch). Concomitant hemiarch (hazard ratio, 1.00; 95% confidence interval, 0.54-1.86, P = .99) and total arch replacement (hazard ratio, 1.60, 95% confidence interval, 0.72-3.57, P = .24) were not significantly associated with increased mortality. Rates of stroke were not significantly different among each group: isolated root (n = 11/348, 3.7%), root + hemiarch (n = 17/295, 5.8%), and root + total arch (n = 3/53, 5.7%) replacement (P = .50), nor was the adjusted risk of stroke. Both concomitant arch interventions were associated with prolonged ventilator use and use of postoperative blood transfusions. Conclusions: Hemiarch and total arch replacement are safe to perform at the time of aortic root intervention, with no significant differences in survival or stroke rates, but increased ventilator and blood product use.

20.
Science ; 379(6630): eabo5003, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36701466

ABSTRACT

Amazonian environments are being degraded by modern industrial and agricultural activities at a pace far above anything previously known, imperiling its vast biodiversity reserves and globally important ecosystem services. The most substantial threats come from regional deforestation, because of export market demands, and global climate change. The Amazon is currently perched to transition rapidly from a largely forested to a nonforested landscape. These changes are happening much too rapidly for Amazonian species, peoples, and ecosystems to respond adaptively. Policies to prevent the worst outcomes are known and must be enacted immediately. We now need political will and leadership to act on this information. To fail the Amazon is to fail the biosphere, and we fail to act at our peril.


Subject(s)
Anthropogenic Effects , Ecosystem , Forests , Humans , Biodiversity , Conservation of Natural Resources , Brazil
SELECTION OF CITATIONS
SEARCH DETAIL