Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 19(3): e1011260, 2023 03.
Article in English | MEDLINE | ID: mdl-36972292

ABSTRACT

Leprosy, caused by Mycobacterium leprae, rarely affects children younger than 5 years. Here, we studied a multiplex leprosy family that included monozygotic twins aged 22 months suffering from paucibacillary leprosy. Whole genome sequencing identified three amino acid mutations previously associated with Crohn's disease and Parkinson's disease as candidate variants for early onset leprosy: LRRK2 N551K, R1398H and NOD2 R702W. In genome-edited macrophages, we demonstrated that cells expressing the LRRK2 mutations displayed reduced apoptosis activity following mycobacterial challenge independently of NOD2. However, employing co-immunoprecipitation and confocal microscopy we showed that LRRK2 and NOD2 proteins interacted in RAW cells and monocyte-derived macrophages, and that this interaction was substantially reduced for the NOD2 R702W mutation. Moreover, we observed a joint effect of LRRK2 and NOD2 variants on Bacillus Calmette-Guérin (BCG)-induced respiratory burst, NF-κB activation and cytokine/chemokine secretion with a strong impact for the genotypes found in the twins consistent with a role of the identified mutations in the development of early onset leprosy.


Subject(s)
Genetic Predisposition to Disease , Leprosy , Child , Humans , Alleles , Genotype , Leprosy/genetics , Mutation , Nod2 Signaling Adaptor Protein/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics
2.
J Allergy Clin Immunol ; 153(1): 256-264, 2024 01.
Article in English | MEDLINE | ID: mdl-37678575

ABSTRACT

BACKGROUND: The contribution of genetic factors to the severity of adult hemophagocytic lymphohistiocytosis (HLHa) remains unclear. OBJECTIVE: We sought to assess a potential link between HLHa outcomes and HLH-related gene variants. METHODS: Clinical characteristics of 130 HLHa patients (age ≥ 18 years and HScore ≥ 169) and genotype of 8 HLH-related genes (LYST, PRF1, UNC13-D, STX11, STXBP2, RAB27A, XIAP, and SAP) were collected. A total of 34 variants found in only 6 genes were selected on the basis of their frequency and criteria predicted to impair protein function. Severity was defined by refractory disease to HLH treatment, death, or transfer to an intensive care unit. RESULTS: HLHa-associated diseases (ADs) were neoplasia (n = 49 [37.7%]), autoimmune/inflammatory disease (n = 33 [25.4%]), or idiopathic when no AD was identified (n = 48 [36.9%]). Infectious events occurred in 76 (58.5%) patients and were equally distributed in all ADs. Severe and refractory HLHa were observed in 80 (61.5%) and 64 (49.2%) patients, respectively. HScore, age, sex ratio, AD, and infectious events showed no significant association with HLHa severity. Variants were identified in 71 alleles and were present in 56 (43.1%) patients. They were distributed as follows: 44 (34.4%), 9 (6.9%), and 3 (2.3%) patients carrying 1, 2, and 3 variant alleles, respectively. In a logistic regression model, only the number of variants was significantly associated with HLHa severity (1 vs 0: 3.86 [1.73-9.14], P = .0008; 2-3 vs 0: 29.4 [3.62-3810], P = .0002) and refractoriness (1 vs 0: 2.47 [1.17-5.34], P = .018; 2-3 vs 0: 13.2 [2.91-126.8], P = .0003). CONCLUSIONS: HLH-related gene variants may be key components to the severity and refractoriness of HLHa.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Adult , Humans , Adolescent , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/therapy , Alleles , Genotype , Signaling Lymphocytic Activation Molecule Associated Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/genetics
3.
PLoS Genet ; 17(3): e1009392, 2021 03.
Article in English | MEDLINE | ID: mdl-33661925

ABSTRACT

The natural history of tuberculosis (TB) is characterized by a large inter-individual outcome variability after exposure to Mycobacterium tuberculosis. Specifically, some highly exposed individuals remain resistant to M. tuberculosis infection, as inferred by tuberculin skin test (TST) or interferon-gamma release assays (IGRAs). We performed a genome-wide association study of resistance to M. tuberculosis infection in an endemic region of Southern Vietnam. We enrolled household contacts (HHC) of pulmonary TB cases and compared subjects who were negative for both TST and IGRA (n = 185) with infected individuals (n = 353) who were either positive for both TST and IGRA or had a diagnosis of TB. We found a genome-wide significant locus on chromosome 10q26.2 with a cluster of variants associated with strong protection against M. tuberculosis infection (OR = 0.42, 95%CI 0.35-0.49, P = 3.71×10-8, for the genotyped variant rs17155120). The locus was replicated in a French multi-ethnic HHC cohort and a familial admixed cohort from a hyper-endemic area of South Africa, with an overall OR for rs17155120 estimated at 0.50 (95%CI 0.45-0.55, P = 1.26×10-9). The variants are located in intronic regions and upstream of C10orf90, a tumor suppressor gene which encodes an ubiquitin ligase activating the transcription factor p53. In silico analysis showed that the protective alleles were associated with a decreased expression in monocytes of the nearby gene ADAM12 which could lead to an enhanced response of Th17 lymphocytes. Our results reveal a novel locus controlling resistance to M. tuberculosis infection across different populations.


Subject(s)
Chromosomes, Human, Pair 10 , Disease Resistance/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Mycobacterium tuberculosis , Quantitative Trait Loci , Tuberculosis/genetics , Tuberculosis/microbiology , Alleles , Computational Biology/methods , France , Genotype , Humans , Meta-Analysis as Topic , Population Groups/genetics , South Africa , Vietnam
4.
Genet Epidemiol ; 45(8): 821-829, 2021 12.
Article in English | MEDLINE | ID: mdl-34402542

ABSTRACT

Many methods for rare variant association studies require permutations to assess the significance of tests. Standard permutations assume that all individuals are exchangeable and do not take population stratification (PS), a known confounding factor in genetic studies, into account. We propose a novel strategy, LocPerm, in which individual phenotypes are permuted only with their closest ancestry-based neighbors. We performed a simulation study, focusing on small samples, to evaluate and compare LocPerm with standard permutations and classical adjustment on first principal components. Under the null hypothesis, LocPerm was the only method providing an acceptable type I error, regardless of sample size and level of stratification. The power of LocPerm was similar to that of standard permutation in the absence of PS, and remained stable in different PS scenarios. We conclude that LocPerm is a method of choice for taking PS and/or small sample size into account in rare variant association studies.


Subject(s)
Genetics, Population , Models, Genetic , Computer Simulation , Genetic Association Studies , Humans , Sample Size
5.
PLoS Pathog ; 16(8): e1008818, 2020 08.
Article in English | MEDLINE | ID: mdl-32776973

ABSTRACT

Leprosy is a chronic disease caused by Mycobacterium leprae. Worldwide, more than 200,000 new patients are affected by leprosy annually, making it the second most common mycobacterial disease after tuberculosis. The MHC/HLA region has been consistently identified as carrying major leprosy susceptibility variants in different populations at times with inconsistent results. To establish the unambiguous molecular identity of classical HLA class I and class II leprosy susceptibility factors, we applied next-generation sequencing to genotype with high-resolution 11 HLA class I and class II genes in 1,155 individuals from a Vietnamese leprosy case-control sample. HLA alleles belonging to an extended haplotype from HLA-A to HLA-DPB1 were associated with risk to leprosy. This susceptibility signal could be reduced to the HLA-DRB1*10:01~ HLA-DQA1*01:05 alleles which were in complete linkage disequilibrium (LD). In addition, haplotypes containing HLA-DRB3~ HLA-DRB1*12:02 and HLA-C*07:06~ HLA-B*44:03~ HLA-DRB1*07:01 alleles were found as two independent protective factors for leprosy. Moreover, we replicated the previously associated HLA-DRB1*15:01 as leprosy risk factor and HLA-DRB1*04:05~HLA-DQA1*03:03 as protective alleles. When we narrowed the analysis to the single amino acid level, we found that the associations of the HLA alleles were largely captured by four independent amino acids at HLA-DRß1 positions 57 (D) and 13 (F), HLA-B position 63 (E) and HLA-A position 19 (K). Hence, analyses at the amino acid level circumvented the ambiguity caused by strong LD of leprosy susceptibility HLA alleles and identified four distinct leprosy susceptibility factors.


Subject(s)
Amino Acids/genetics , Genetic Predisposition to Disease , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Leprosy/pathology , Mutation , Adolescent , Adult , Female , Haplotypes , Humans , Leprosy/genetics , Male , Young Adult
6.
PLoS Pathog ; 16(5): e1008565, 2020 05.
Article in English | MEDLINE | ID: mdl-32421744

ABSTRACT

Leprosy is a chronic infectious disease of the skin and peripheral nerves with a strong genetic predisposition. Recent genome-wide approaches have identified numerous common variants associated with leprosy, almost all in the Chinese population. We conducted the first family-based genome-wide association study of leprosy in 622 affected offspring from Vietnam, followed by replication in an independent sample of 1181 leprosy cases and 668 controls of the same ethnic origin. The most significant results were observed within the HLA region, in which six SNPs displayed genome-wide significant associations, all of which were replicated in the independent case/control sample. We investigated the signal in the HLA region in more detail, by conducting a multivariate analysis on the case/control sample of 319 GWAS-suggestive HLA hits for which evidence for replication was obtained. We identified three independently associated SNPs, two located in the HLA class I region (rs1265048: OR = 0.69 [0.58-0.80], combined p-value = 5.53x10-11; and rs114598080: OR = 1.47 [1.46-1.48], combined p-value = 8.77x10-13), and one located in the HLA class II region (rs3187964 (OR = 1.67 [1.55-1.80], combined p-value = 8.35x10-16). We also validated two previously identified risk factors for leprosy: the missense variant rs3764147 in the LACC1 gene (OR = 1.52 [1.41-1.63], combined p-value = 5.06x10-14), and the intergenic variant rs6871626 located close to the IL12B gene (OR = 0.73 [0.61-0.84], combined p-value = 6.44x10-8). These results shed new light on the genetic control of leprosy, by dissecting the influence of HLA SNPs, and validating the independent role of two additional variants in a large Vietnamese sample.


Subject(s)
Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Leprosy/genetics , Polymorphism, Single Nucleotide , Female , Genome-Wide Association Study , Humans , Interleukin-12 Subunit p40/genetics , Intracellular Signaling Peptides and Proteins/genetics , Leprosy/epidemiology , Male
7.
Proc Natl Acad Sci U S A ; 116(31): 15616-15624, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31308240

ABSTRACT

Type-1 reactions (T1R) are pathological inflammatory episodes and main contributors to nerve damage in leprosy. Here, we evaluate the genewise enrichment of rare protein-altering variants in 7 genes where common variants were previously associated with T1R. We selected 474 Vietnamese leprosy patients of which 237 were T1R-affected and 237 were T1R-free matched controls. Genewise enrichment of nonsynonymous variants was tested with both kernel-based (sequence kernel association test [SKAT]) and burden methods. Of the 7 genes tested 2 showed statistical evidence of association with T1R. For the LRRK2 gene an enrichment of nonsynonymous variants was observed in T1R-free controls (PSKAT-O = 1.6 × 10-4). This genewise association was driven almost entirely by the gain-of-function variant R1628P (P = 0.004; odds ratio = 0.29). The second genewise association was found for the Parkin coding gene PRKN (formerly PARK2) where 7 rare variants were enriched in T1R-affected cases (PSKAT-O = 7.4 × 10-5). Mutations in both PRKN and LRRK2 are known causes of Parkinson's disease (PD). Hence, we evaluated to what extent such rare amino acid changes observed in T1R are shared with PD. We observed that amino acids in Parkin targeted by nonsynonymous T1R-risk mutations were also enriched for mutations implicated in PD (P = 1.5 × 10-4). Hence, neuroinflammation in PD and peripheral nerve damage due to inflammation in T1R share overlapping genetic control of pathogenicity.


Subject(s)
Leprosy , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mutation , Parkinson Disease , Ubiquitin-Protein Ligases , Female , Humans , Leprosy/genetics , Leprosy/metabolism , Leprosy/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
8.
PLoS Genet ; 13(2): e1006637, 2017 02.
Article in English | MEDLINE | ID: mdl-28222097

ABSTRACT

Leprosy Type-1 Reactions (T1Rs) are pathological inflammatory responses that afflict a sub-group of leprosy patients and result in peripheral nerve damage. Here, we employed a family-based GWAS in 221 families with 229 T1R-affect offspring with stepwise replication to identify risk factors for T1R. We discovered, replicated and validated T1R-specific associations with SNPs located in chromosome region 10p21.2. Combined analysis across the three independent samples resulted in strong evidence of association of rs1875147 with T1R (p = 4.5x10-8; OR = 1.54, 95% CI = 1.32-1.80). The T1R-risk locus was restricted to a lncRNA-encoding genomic interval with rs1875147 being an eQTL for the lncRNA. Since a genetic overlap between leprosy and inflammatory bowel disease (IBD) has been detected, we evaluated if the shared genetic control could be traced to the T1R endophenotype. Employing the results of a recent IBD GWAS meta-analysis we found that 10.6% of IBD SNPs available in our dataset shared a common risk-allele with T1R (p = 2.4x10-4). This finding points to a substantial overlap in the genetic control of clinically diverse inflammatory disorders.


Subject(s)
Genetic Predisposition to Disease , Inflammatory Bowel Diseases/genetics , Leprosy/genetics , RNA, Long Noncoding/genetics , Female , Gene Expression Regulation , Genome-Wide Association Study , Humans , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/pathology , Leprosy/complications , Leprosy/pathology , Male , Nerve Degeneration/complications , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , RNA, Long Noncoding/biosynthesis , Risk Factors , Vietnam
9.
J Clin Immunol ; 39(7): 702-712, 2019 10.
Article in English | MEDLINE | ID: mdl-31401750

ABSTRACT

PURPOSE: Patients with primary immunodeficiency (PID) are at risk of serious complications. However, data on the incidence and causes of emergency hospital admissions are scarce. The primary objective of the present study was to describe emergency hospital admissions among patients with PID, with a view to identifying "at-risk" patient profiles. METHODS: We performed a prospective observational 12-month multicenter study in France via the CEREDIH network of regional PID reference centers from November 2010 to October 2011. All patients with PIDs requiring emergency hospital admission were included. RESULTS: A total of 200 admissions concerned 137 patients (73 adults and 64 children, 53% of whom had antibody deficiencies). Thirty admissions were reported for 16 hematopoietic stem cell transplantation recipients. When considering the 170 admissions of non-transplant patients, 149 (85%) were related to acute infections (respiratory tract infections and gastrointestinal tract infections in 72 (36%) and 34 (17%) of cases, respectively). Seventy-seven percent of the admissions occurred during winter or spring (December to May). The in-hospital mortality rate was 8.8% (12 patients); death was related to a severe infection in 11 cases (8%) and Epstein-Barr virus-induced lymphoma in 1 case. Patients with a central venous catheter (n = 19, 13.9%) were significantly more hospitalized for an infection (94.7%) than for a non-infectious reason (5.3%) (p = 0.04). CONCLUSION: Our data showed that the annual incidence of emergency hospital admission among patients with PID is 3.4%. The leading cause of emergency hospital admission was an acute infection, and having a central venous catheter was associated with a significantly greater risk of admission for an infectious episode.


Subject(s)
Emergency Medical Services , Hospitalization , Primary Immunodeficiency Diseases/epidemiology , Adult , Child , Communicable Disease Control , Communicable Diseases/etiology , Disease Management , France/epidemiology , Humans , Incidence , Pre-Exposure Prophylaxis , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/etiology , Primary Immunodeficiency Diseases/therapy , Public Health Surveillance , Treatment Outcome
10.
Clin Genet ; 96(4): 330-340, 2019 10.
Article in English | MEDLINE | ID: mdl-31254389

ABSTRACT

In the digital age, a genetics cohort has become much more than a simple means of determining the cause of a disease. Two-sided markets, of which 23andMe, Ancestry DNA and MyHeritage are the best known, have showed this perfectly over the last few years: a cohort has become a means of producing massive amounts of data for medical, scientific and commercial exploitation, and for genetic use in particular. French law does not currently allow these foreign private companies to develop on French national territory and also forbids the creation of similar entities in France. However, at least in theory, this same law does not preclude the creation of new types of cohorts in France inspired by the success of two-sided markets but retaining features specific to the French healthcare management system. We propose an optimal solution for France, for genomic studies associated with multi-subject questionnaires, still purely theoretical for the moment: the development, with no need for any change in the law, of France's own version of "Genetics v.2.0": "e-CohortE."


Subject(s)
Mobile Applications , Telemedicine/methods , User-Computer Interface , Web Browser , Communications Media , Databases, Factual , France , Humans , Physicians , Research Personnel
11.
Proc Natl Acad Sci U S A ; 113(24): 6713-8, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27247391

ABSTRACT

Principal component analysis (PCA), homozygosity rate estimations, and linkage studies in humans are classically conducted through genome-wide single-nucleotide variant arrays (GWSA). We compared whole-exome sequencing (WES) and GWSA for this purpose. We analyzed 110 subjects originating from different regions of the world, including North Africa and the Middle East, which are poorly covered by public databases and have high consanguinity rates. We tested and applied a number of quality control (QC) filters. Compared with GWSA, we found that WES provided an accurate prediction of population substructure using variants with a minor allele frequency > 2% (correlation = 0.89 with the PCA coordinates obtained by GWSA). WES also yielded highly reliable estimates of homozygosity rates using runs of homozygosity with a 1,000-kb window (correlation = 0.94 with the estimates provided by GWSA). Finally, homozygosity mapping analyses in 15 families including a single offspring with high homozygosity rates showed that WES provided 51% less genome-wide linkage information than GWSA overall but 97% more information for the coding regions. At the genome-wide scale, 76.3% of linked regions were found by both GWSA and WES, 17.7% were found by GWSA only, and 6.0% were found by WES only. For coding regions, the corresponding percentages were 83.5%, 7.4%, and 9.1%, respectively. With appropriate QC filters, WES can be used for PCA and adjustment for population substructure, estimating homozygosity rates in individuals, and powerful linkage analyses, particularly in coding regions.


Subject(s)
Consanguinity , Genetic Linkage , Genome-Wide Association Study , Homozygote , Female , Humans , Male , Middle East , North America
13.
J Allergy Clin Immunol ; 140(5): 1388-1393.e8, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28192146

ABSTRACT

BACKGROUND: Primary immunodeficiencies (PIDs) are inherited diseases associated with a considerable increase in susceptibility to infections. It is known that PIDs can also predispose to cancer and immune diseases, including allergy, autoimmunity, and inflammation. OBJECTIVE: We aimed at determining the incidence of autoimmunity and inflammation in patients with PIDs. METHODS: We have retrospectively screened 2183 consecutive cases of PID in the Centre de Référence Déficits Immunitaires Héréditaires registry (CEREDIH; the French national PID registry) for the occurrence of autoimmunity and inflammation. RESULTS: One or more autoimmune and inflammatory complications were noted in 26.2% of patients, with a risk of onset throughout the patient's lifetime. The risk of autoimmune cytopenia was at least 120 times higher than in the general population, the risk of inflammatory bowel disease in children was 80 times higher, and the risk of other autoimmune manifestations was approximately 10 times higher. Remarkably, all types of PIDs were associated with a risk of autoimmune and inflammatory complications, although the greatest risk was associated with T-cell PIDs and common variable immunodeficiency. The occurrence of autoimmune disease is a negative prognostic factor for survival. CONCLUSIONS: Our results provide the basis for a detailed prospective evaluation of autoimmunity and inflammation in the context of PIDs, with a view to accurately assessing these risks and describing the possible effect of medical intervention.


Subject(s)
Autoimmunity , Immunologic Deficiency Syndromes/epidemiology , Inflammatory Bowel Diseases/epidemiology , Purpura, Thrombocytopenic, Idiopathic/epidemiology , T-Lymphocytes/immunology , Adolescent , Adult , Age of Onset , Aged , Aged, 80 and over , Child , Child, Preschool , Female , France/epidemiology , Humans , Immunologic Deficiency Syndromes/mortality , Infant , Inflammatory Bowel Diseases/mortality , Male , Middle Aged , Prevalence , Prognosis , Purpura, Thrombocytopenic, Idiopathic/mortality , Retrospective Studies , Risk , Survival Analysis , Young Adult
15.
J Infect Dis ; 213(7): 1173-9, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26690346

ABSTRACT

BACKGROUND: Interferon γ (IFN-γ) release assays (IGRAs) provide an in vitro measurement of antimycobacterial immunity that is widely used as a test for Mycobacterium tuberculosis infection. IGRA outcomes are highly heritable in various populations, but the nature of the involved genetic factors remains unknown. METHODS: We conducted a genome-wide linkage analysis of IGRA phenotypes in families from a tuberculosis household contact study in France and a replication study in families from South Africa to confirm the loci identified. RESULTS: We identified a major locus on chromosome 8q controlling IFN-γ production in response to stimulation with live bacillus Calmette-Guerin (BCG; LOD score, 3.81; P = 1.40 × 10(-5)). We also detected a second locus, on chromosome 3q, that controlled IFN-γ levels in response to stimulation with 6-kDa early secretory antigen target, when accounting for the IFN-γ production shared with that induced by BCG (LOD score, 3.72; P = 1.8 × 10(-5)). Both loci were replicated in South African families, where tuberculosis is hyperendemic. These loci differ from those previously identified as controlling the response to the tuberculin skin test (TST1 and TST2) and the production of TNF-α (TNF1). CONCLUSIONS: The identification of 2 new linkage signals in populations of various ethnic origins living in different M. tuberculosis exposure settings provides new clues about the genetic control of human antimycobacterial immunity.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Chromosomes, Human, Pair 3 , Chromosomes, Human, Pair 8 , Gene Expression Regulation, Bacterial/immunology , Interferon-gamma/metabolism , Mycobacterium bovis/immunology , Cohort Studies , Female , France , Genetic Linkage , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Interferon-gamma/genetics , Male , Phenotype , Prospective Studies , South Africa , Tuberculosis/genetics , Tuberculosis/immunology
16.
PLoS Genet ; 9(7): e1003624, 2013.
Article in English | MEDLINE | ID: mdl-23874223

ABSTRACT

Leprosy reversal reactions type 1 (T1R) are acute immune episodes that affect a subset of leprosy patients and remain a major cause of nerve damage. Little is known about the relative importance of innate versus environmental factors in the pathogenesis of T1R. In a retrospective design, we evaluated innate differences in response to Mycobacterium leprae between healthy individuals and former leprosy patients affected or free of T1R by analyzing the transcriptome response of whole blood to M. leprae sonicate. Validation of results was conducted in a subsequent prospective study. We observed the differential expression of 581 genes upon exposure of whole blood to M. leprae sonicate in the retrospective study. We defined a 44 T1R gene set signature of differentially regulated genes. The majority of the T1R set genes were represented by three functional groups: i) pro-inflammatory regulators; ii) arachidonic acid metabolism mediators; and iii) regulators of anti-inflammation. The validity of the T1R gene set signature was replicated in the prospective arm of the study. The T1R genetic signature encompasses genes encoding pro- and anti-inflammatory mediators of innate immunity. This suggests an innate defect in the regulation of the inflammatory response to M. leprae antigens. The identified T1R gene set represents a critical first step towards a genetic profile of leprosy patients who are at increased risk of T1R and concomitant nerve damage.


Subject(s)
Antigens, Bacterial/blood , Gene Expression Profiling , Leprosy/genetics , Mycobacterium leprae/genetics , Nerve Degeneration/genetics , Adolescent , Adult , Antigens, Bacterial/isolation & purification , Child , Female , Gene Expression Regulation , Humans , Immunity, Innate/genetics , Interferon-gamma/blood , Leprosy/microbiology , Leprosy/physiopathology , Male , Mycobacterium leprae/pathogenicity , Nerve Degeneration/microbiology , Nerve Degeneration/physiopathology , Retrospective Studies
17.
Nat Genet ; 39(4): 517-22, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17353895

ABSTRACT

Host genetics has an important role in leprosy, and variants in the shared promoter region of PARK2 and PACRG were the first major susceptibility factors identified by positional cloning. Here we report the linkage disequilibrium mapping of the second linkage peak of our previous genome-wide scan, located close to the HLA complex. In both a Vietnamese familial sample and an Indian case-control sample, the low-producing lymphotoxin-alpha (LTA)+80 A allele was significantly associated with an increase in leprosy risk (P = 0.007 and P = 0.01, respectively). Analysis of an additional case-control sample from Brazil and an additional familial sample from Vietnam showed that the LTA+80 effect was much stronger in young individuals. In the combined sample of 298 Vietnamese familial trios, the odds ratio of leprosy for LTA+80 AA/AC versus CC subjects was 2.11 (P = 0.000024), which increased to 5.63 (P = 0.0000004) in the subsample of 121 trios of affected individuals diagnosed before 16 years of age. In addition to identifying LTA as a major gene associated with early-onset leprosy, our study highlights the critical role of case- and population-specific factors in the dissection of susceptibility variants in complex diseases.


Subject(s)
Genetic Predisposition to Disease , Leprosy/genetics , Lymphotoxin-alpha/genetics , Research Design , Adolescent , Adult , Age of Onset , Alleles , Brazil/epidemiology , Case-Control Studies , Child , Humans , India/epidemiology , Leprosy/epidemiology , Linkage Disequilibrium , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , Vietnam/epidemiology
18.
J Infect Dis ; 211(2): 317-21, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25143445

ABSTRACT

A substantial proportion of subjects exposed to a contagious tuberculosis case display lack of tuberculin skin test (TST) reactivity. We previously mapped a major locus (TST1) controlling lack of TST reactivity in families from an area in South Africa where tuberculosis is hyperendemic. Here, we conducted a household tuberculosis contact study in a French area where the endemicity of tuberculosis is low. A genome-wide analysis of TST negativity identified a significant linkage signal (P < 3 × 10(-5)) in close vicinity of TST1. Combined analysis of the 2 samples increased evidence of linkage (P = 2.4 × 10(-6)), further implicating genetic factors located on 11p14-15. This region overlaps the TNF1 locus controlling mycobacteria-driven tumor necrosis factor α production.


Subject(s)
Hypersensitivity, Delayed/genetics , Tuberculin Test , Tuberculin/immunology , Tuberculosis/diagnosis , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Association Studies , Humans , Infant , Linkage Disequilibrium , Male , Middle Aged , Prospective Studies , South Africa , Young Adult
19.
J Infect Dis ; 211(6): 968-77, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25320285

ABSTRACT

BACKGROUND: Type 1 reactions (T1R) affect a considerable proportion of patients with leprosy. In those with T1R, the host immune response pathologically overcompensates for the actual infectious threat, resulting in nerve damage and permanent disability. Based on the results of a genome-wide association study of leprosy per se, we investigated the TNFSF15 chromosomal region for a possible contribution to susceptibility to T1R. METHODS: We performed a high-resolution association scan of the TNFSF15 locus to evaluate the association with T1R in 2 geographically and ethnically distinct populations: a family-based sample from Vietnam and a case-control sample from Brazil, comprising a total of 1768 subjects. RESULTS: In the Vietnamese sample, 47 single-nucleotide polymorphisms (SNPs) overlapping TNFSF15 and the adjacent TNFSF8 gene were associated with T1R but not with leprosy. Of the 47 SNPs, 39 were cis-expression quantitative trait loci (cis-eQTL) for TNFSF8 including SNPs located within the TNFSF15 gene. In the Brazilian sample, 18 of these cis-eQTL SNPs overlapping the TNFSF8 gene were validated for association with T1R. CONCLUSIONS: Taken together, these results indicate TNFSF8 and not TNFSF15 as an important T1R susceptibility gene. Our data support the need for infection genetics to go beyond genes for pathogen control to explore genes involved in a commensurate host response.


Subject(s)
CD30 Ligand/genetics , Leprosy/genetics , Chromosome Mapping , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Leprosy/immunology , Polymorphism, Single Nucleotide , Tumor Necrosis Factor Ligand Superfamily Member 15/genetics
20.
Genet Epidemiol ; 38(6): 560-71, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25044438

ABSTRACT

Genotype imputation is a critical technique for following up genome-wide association studies. Efficient methods are available for dealing with the probabilistic nature of imputed single nucleotide polymorphisms (SNPs) in population-based designs, but not for family-based studies. We have developed a new analytical approach (FBATdosage), using imputed allele dosage in the general framework of family-based association tests to bridge this gap. Simulation studies showed that FBATdosage yielded highly consistent type I error rates, whatever the level of genotype uncertainty, and a much higher power than the best-guess genotype approach. FBATdosage allows fast linkage and association testing of several million of imputed variants with binary or quantitative phenotypes in nuclear families of arbitrary size with arbitrary missing data for the parents. The application of this approach to a family-based association study of leprosy susceptibility successfully refined the association signal at two candidate loci, C1orf141-IL23R on chromosome 1 and RAB32-C6orf103 on chromosome 6.


Subject(s)
Genome-Wide Association Study , Models, Genetic , Alleles , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 6 , Disease Susceptibility , Genetic Linkage , Genetic Loci , Genotype , Humans , Leprosy/genetics , Leprosy/pathology , Nuclear Family , Phenotype , Polymorphism, Single Nucleotide , Receptors, Interleukin/genetics , rab GTP-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL