Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Dairy Sci ; 106(7): 5165-5181, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37225583

ABSTRACT

Although there is evidence that ketosis negatively affects fertility, the effect of late and early ketosis on the reproductive performance of lactating cows has not been systematically investigated. The aim of this study was to evaluate the association between time and amplitude of elevated milk BHB (EMB) occurring within 42 d in milk (DIM) and subsequent reproductive performance of lactating Holstein cows. The dairy herd information data of 30,413 cows with 2 test-day milk BHB recordings during early lactation periods 1 and 2 (5-14 and 15-42 DIM, respectively) assessed as negative (<0.15 mmol/L), suspect (0.15-0.19 mmol/L), or positive (≥0.2 mmol/L) for EMB were used in this study. Based on the time and amplitude of milk BHB, cows were grouped into 7 groups: (1) healthy cows negative in both periods 1 and 2 were classified as NEG; (2) suspect in period 1 and negative in period 2: EARLY_SUSP; (3) suspect in period 1 and suspect/positive in period 2: EARLY_SUSP_Pro; (4) positive in period 1 and negative in period 2: EARLY_POS; (5) positive in period 1 and suspect/positive in period 2: EARLY_POS_Pro; (6) negative in period 1 and suspect in period 2: LATE_SUSP; and (7) negative in period 1 and positive in period 2: LATE_POS. The overall prevalence of EMB within 42 DIM was 27.4%, with the highest prevalence being EARLY_SUSP (10.49%). Cows in EARLY_POS and EARLY_POS_Pro, but not other EMB categories, had a longer interval from calving to first service compared with NEG cows. For the reproductive parameters, first service to conception interval, days open and calving interval, cows in all EMB groups except EARLY_SUSP had longer intervals compared with NEG cows. These data indicate that there is a negative association between EMB within 42 d and reproductive performance after the voluntary waiting period. The intriguing findings of this study are the unaltered reproductive performance of EARLY_SUSP cows, and the negative association between late EMB and reproductive performance. Hence, monitoring and prevention of ketosis during the first 6 wk of lactation is necessary to optimize reproductive performance of lactating dairy cows.


Subject(s)
Cattle Diseases , Ketosis , Female , Cattle , Animals , Lactation , Milk , 3-Hydroxybutyric Acid , Cattle Diseases/epidemiology , Ketosis/veterinary , Ketosis/epidemiology
2.
Animal ; 18(2): 101063, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237478

ABSTRACT

The severe loss of body condition score (BCS) during the early lactation period has been associated with infertility in cows. However, the mechanisms are not fully understood. The aim of this study was to examine the effect of BCS loss on liver health, and ovarian functions in cows during early lactation. Retrospectively multiparous cows from two farms were categorized based on units of BCS (1-5 scale) loss as Moderate (MOD, <0.75 units; n = 11) or Severe (SEV, ≥0.75 units; n = 9) loss groups. From Weeks -3 to 7, relative to calving, MOD and SEV cows lost on average 0.4 and 1.0-unit BCS, respectively. All data except hepatic transcriptomes were analyzed with PROC MIXED procedure of SAS. The plasma concentration of non-esterified fatty acids at Week 0 and 1, ß-hydroxy butyrate at Week 1, and γ-glutamyl transferase at Weeks 1 and 7 relative to calving were higher in SEV cows. Hepatic transcriptome analysis showed that 1 186 genes were differentially expressed in SEV (n = 3) compared to MOD (n = 3) cows at Week 7 after calving. Pathway analysis revealed that significant DEGs in SEV cows enriched in lipid metabolisms including, lipid metabolic process, ether lipid metabolism, fatty acid beta-oxidation, fatty acid biosynthetic process, fatty acid metabolic process, fat digestion and absorption, linoleic acid metabolism, alpha-linolenic acid metabolism. The impaired liver function in SEV cows was associated with 1.5-fold reduction of hepatic IGF1 gene expression and lower serum IGF1 concentrations. At the ovarian level, SEV cows had lower IGF1 concentration in the follicular fluid of the dominant follicle of the synchronized follicular wave compared to that of MOD cows at 7 weeks after calving. Further, the follicular fluid concentration of estradiol-17ß was lower in SEV cows along with lower transcript abundance of genes from granulosa cells associated with dominant follicle competence, including CYP19A1, NR5A2, IGF1, and LHCGR. These data show that SEV loss of BCS during early lactation leading up to the planned start of breeding is associated with liver dysfunction, including lower IGF1 secretion, and impaired function of the dominant follicle in the ovary.


Subject(s)
Lactation , Animals , Cattle/genetics , Female , Fatty Acids/metabolism , Fatty Acids, Nonesterified , Lactation/metabolism , Lipids , Liver/metabolism , Milk/metabolism , Postpartum Period/metabolism , Retrospective Studies
3.
Theriogenology ; 110: 130-141, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29396041

ABSTRACT

In most mammalian species including cattle, heat stress has detrimental effects on ovarian function through disturbing estradiol production and viability of granulosa cells. However, effect of heat stress and underlying cellular defense mechanisms of bovine granulosa cells is not fully understood. Here, we aimed to investigate the effect of heat stress on granulosa cells function and the associated defense mechanism. For this an in vitro granulosa cell model was used to investigate the role of elevated temperature (41 °C) on granulosa cell functions at 24 h and 48 h exposure compared to the control cultured at 37 °C. The results showed that reactive oxygen species level was higher in cells under 41 °C at 24 h compared to control. In response to increased reactive oxygen species level, the expression of NRF2 and its antioxidant genes, CAT and PRDX1 were higher in bovine granulosa cells exposed to heat stress. Interestingly, heat stress markedly increased expression of endoplasmic reticulum stress marker genes; GRP78 and GRP94, in cultured bovine granulosa cells at 24 h, and higher protein accumulation of GRP78 accompanied by increased expression of apoptotic genes, BAX and CASPASE-3. Moreover, heat stress significantly decreased the bovine granulosa cells proliferation, which was supported by decreased in the expression of proliferation marker gene PCNA. All in all heat stress induce reactive oxygen species accumulation, apoptosis and reduced proliferation, which trigger the NRF2 mediated oxidative stress and endoplasmic reticulum stress response by bovine granulosa cells.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Granulosa Cells/metabolism , Heat Stress Disorders , Oxidative Stress/physiology , Animals , Cattle , Cattle Diseases/metabolism , Cattle Diseases/pathology , Cells, Cultured , Female , Granulosa Cells/pathology , Heat Stress Disorders/metabolism , Heat Stress Disorders/pathology , Heat Stress Disorders/veterinary , Hot Temperature , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL