Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 552(7685): 362-367, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29236685

ABSTRACT

The differentiation of human memory CD8 T cells is not well understood. Here we address this issue using the live yellow fever virus (YFV) vaccine, which induces long-term immunity in humans. We used in vivo deuterium labelling to mark CD8 T cells that proliferated in response to the virus and then assessed cellular turnover and longevity by quantifying deuterium dilution kinetics in YFV-specific CD8 T cells using mass spectrometry. This longitudinal analysis showed that the memory pool originates from CD8 T cells that divided extensively during the first two weeks after infection and is maintained by quiescent cells that divide less than once every year (doubling time of over 450 days). Although these long-lived YFV-specific memory CD8 T cells did not express effector molecules, their epigenetic landscape resembled that of effector CD8 T cells. This open chromatin profile at effector genes was maintained in memory CD8 T cells isolated even a decade after vaccination, indicating that these cells retain an epigenetic fingerprint of their effector history and remain poised to respond rapidly upon re-exposure to the pathogen.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Epigenesis, Genetic , Immunologic Memory/immunology , Yellow Fever Vaccine/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Proliferation , Chromatin/genetics , Chromatin/metabolism , DNA Methylation , Deuterium , Gene Expression Profiling , Half-Life , Humans , Immunologic Memory/genetics , Lymphocyte Count , Mice , Radioisotope Dilution Technique , Transcription, Genetic , Yellow Fever/immunology , Yellow Fever/virology , Yellow fever virus/immunology
2.
Immunity ; 39(3): 496-507, 2013 Sep 19.
Article in English | MEDLINE | ID: mdl-24054328

ABSTRACT

T cells are activated by antigen (Ag)-bearing dendritic cells (DCs) in lymph nodes in three phases. The duration of the initial phase of transient, serial DC-T cell interactions is inversely correlated with Ag dose. The second phase, characterized by stable DC-T cell contacts, is believed to be necessary for full-fledged T cell activation. Here we have shown that this is not the case. CD8⁺ T cells interacting with DCs presenting low-dose, short-lived Ag did not transition to phase 2, whereas higher Ag dose yielded phase 2 transition. Both antigenic constellations promoted T cell proliferation and effector differentiation but yielded different transcriptome signatures at 12 hr and 24 hr. T cells that experienced phase 2 developed long-lived memory, whereas conditions without stable contacts yielded immunological amnesia. Thus, T cells make fate decisions within hours after Ag exposure, resulting in long-term memory or abortive effector responses, correlating with T cell-DCs interaction kinetics.


Subject(s)
Antigen Presentation , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Immunologic Memory/immunology , Adoptive Transfer , Animals , Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Communication , Cell Differentiation , Dendritic Cells/metabolism , Lymph Nodes/immunology , Lymphocyte Activation , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcriptome/immunology
3.
Immunity ; 35(2): 285-98, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21856186

ABSTRACT

To design successful vaccines for chronic diseases, an understanding of memory CD8(+) T cell responses to persistent antigen restimulation is critical. However, most studies comparing memory and naive cell responses have been performed only in rapidly cleared acute infections. Herein, by comparing the responses of memory and naive CD8(+) T cells to acute and chronic lymphocytic choriomeningitis virus infection, we show that memory cells dominated over naive cells and were protective when present in sufficient numbers to quickly reduce infection. In contrast, when infection was not rapidly reduced, because of high antigen load or persistence, memory cells were quickly lost, unlike naive cells. This loss of memory cells was due to a block in sustaining cell proliferation, selective regulation by the inhibitory receptor 2B4, and increased reliance on CD4(+) T cell help. Thus, emphasizing the importance of designing vaccines that elicit effective CD4(+) T cell help and rapidly control infection.


Subject(s)
Antigens, CD/metabolism , Arenaviridae Infections/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocytic choriomeningitis virus/physiology , Receptors, Immunologic/metabolism , T-Lymphocyte Subsets/metabolism , Acute Disease , Adoptive Transfer , Animals , Antigens, CD/immunology , Arenaviridae Infections/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , Cell Proliferation , Cells, Cultured , Chronic Disease , Cytokines/immunology , Cytokines/metabolism , Immunologic Memory , Lymphocytic choriomeningitis virus/pathogenicity , Mice , Mice, Inbred C57BL , Mice, Transgenic , Paracrine Communication , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Immunologic/immunology , Signaling Lymphocytic Activation Molecule Family , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , T-Lymphocyte Subsets/virology , Viral Load , Viral Vaccines
4.
Int J Cancer ; 143(4): 958-970, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29508386

ABSTRACT

Dysregulated NOTCH1 signaling, by either gene mutations or microenvironment interactions, has been increasingly linked to chronic lymphocytic leukemia (CLL). Thus, inhibiting NOTCH1 activity represents a potential therapeutic opportunity for this disease. Using gene expression-based screening, we identified the calcium channel modulator bepridil as a new NOTCH1 pathway inhibitor. In primary CLL cells, bepridil induced selective apoptosis even in the presence of the protective stroma. Cytotoxic effects of bepridil were independent of NOTCH1 mutation and other prognostic markers. The antitumor efficacy of bepridil was associated with inhibition of NOTCH1 activity through a decrement in trans-membrane and activated NOTCH1 protein levels with unchanged NOTCH2 protein levels. In a CLL xenotransplant model, bepridil significantly reduced the percentage of leukemic cells infiltrating the spleen via enhanced apoptosis and decreased NOTCH1 activation. In conclusion, we report in vitro and in vivo anti-leukemic activity of bepridil associated with inhibition of the NOTCH1 pathway in CLL. These data provide a rationale for the clinical development of bepridil as anti-NOTCH1 targeted therapy for CLL patients.


Subject(s)
Antineoplastic Agents/pharmacology , Bepridil/pharmacology , Calcium Channel Blockers/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Receptor, Notch1/antagonists & inhibitors , Receptor, Notch1/metabolism , Animals , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Chemotaxis/drug effects , Drug Screening Assays, Antitumor , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mice , Mutation , Prognosis , Receptor, Notch1/genetics , Tumor Microenvironment , Xenograft Model Antitumor Assays
5.
Appl Opt ; 57(1): 92-101, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29328122

ABSTRACT

This paper describes a scatterometry approach designed by simulations for the in-line characterization of sub-wavelength sinusoidal gratings, which are formed on a transparent foil in a roll-to-roll procedure. Currently used methods are based on series of in situ measurements of the specular optical response at different incident angles or wavelengths for acquiring dimensional information on the gratings. The capability of single measurements of the first diffraction maxima at a fixed incident angle and wavelength to accurately measure the height of the sub-wavelength sinusoidal gratings is investigated in this work. The relation between the scattered powers of the diffraction maxima and the grating height is extracted from light scattering simulations, i.e., the inverse problem is solved. Optimal setup parameters for the measurement of grating heights ranging from 100 nm to 300 nm are derived from simulations. Limits of measurability and the measurement uncertainty are evaluated for different instrumentation and simulation parameters. When using laser light in the visible wavelength range, the measurement uncertainty is physically limited by the photon shot noise to the picometer range, but the systematic contributions dominate the uncertainty. As a result, the measurement uncertainty for the grating height is estimated to ≤12 nm, with a potential for <4 nm. Large-area scanning measurements performed offline and reference atomic force microscopy measurements verify the sensitivity of the presented measurement approach for identifying local variations of the spatial surface properties. Depending on the chosen detection system, sampling rates up to the MHz range are feasible, meeting the requirements of in-line process control of the roll-to-roll production process.

6.
Sci Adv ; 10(22): eadm9449, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820154

ABSTRACT

Pediatric cancers are frequently driven by genomic alterations that result in aberrant transcription factor activity. Here, we used functional genomic screens to identify multiple genes within the transcriptional coactivator Spt-Ada-Gcn5-acetyltransferase (SAGA) complex as selective dependencies for MYCN-amplified neuroblastoma, a disease of dysregulated development driven by an aberrant oncogenic transcriptional program. We characterized the DNA recruitment sites of the SAGA complex in neuroblastoma and the consequences of loss of SAGA complex lysine acetyltransferase (KAT) activity on histone acetylation and gene expression. We demonstrate that loss of SAGA complex KAT activity is associated with reduced MYCN binding on chromatin, suppression of MYC/MYCN gene expression programs, and impaired cell cycle progression. Further, we showed that the SAGA complex is pharmacologically targetable in vitro and in vivo with a KAT2A/KAT2B proteolysis targeting chimeric. Our findings expand our understanding of the histone-modifying complexes that maintain the oncogenic transcriptional state in this disease and suggest therapeutic potential for inhibitors of SAGA KAT activity in MYCN-amplified neuroblastoma.


Subject(s)
Gene Expression Regulation, Neoplastic , N-Myc Proto-Oncogene Protein , Neuroblastoma , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Humans , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Cell Line, Tumor , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Acetylation , Histones/metabolism , Animals , Gene Amplification , Chromatin/metabolism , Chromatin/genetics , Mice
7.
Blood Adv ; 7(21): 6685-6701, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37648673

ABSTRACT

Patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) have a poor prognosis with few therapeutic options. With the goal of identifying novel therapeutic targets, we used data from the Dependency Map project to identify dihydroorotate dehydrogenase (DHODH) as one of the top metabolic dependencies in T-ALL. DHODH catalyzes the fourth step of de novo pyrimidine nucleotide synthesis. Small molecule inhibition of DHODH rapidly leads to the depletion of intracellular pyrimidine pools and forces cells to rely on extracellular salvage. In the absence of sufficient salvage, this intracellular nucleotide starvation results in the inhibition of DNA and RNA synthesis, cell cycle arrest, and, ultimately, death. T lymphoblasts appear to be specifically and exquisitely sensitive to nucleotide starvation after DHODH inhibition. We have confirmed this sensitivity in vitro and in vivo in 3 murine models of T-ALL. We identified that certain subsets of T-ALL seem to have an increased reliance on oxidative phosphorylation when treated with DHODH inhibitors. Through a series of metabolic assays, we show that leukemia cells, in the setting of nucleotide starvation, undergo changes in their mitochondrial membrane potential and may be more highly dependent on alternative fuel sources. The effect on normal T-cell development in young mice was also examined to show that DHODH inhibition does not permanently damage the developing thymus. These changes suggest a new metabolic vulnerability that may distinguish these cells from normal T cells and other normal hematopoietic cells and offer an exploitable therapeutic opportunity. The availability of clinical-grade DHODH inhibitors currently in human clinical trials suggests a potential for rapidly advancing this work into the clinic.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Animals , Mice , Dihydroorotate Dehydrogenase , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Enzyme Inhibitors/pharmacology , T-Lymphocytes/metabolism , Nucleotides/therapeutic use
8.
Cancer Res ; 83(2): 285-300, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36398965

ABSTRACT

Aberrant RAS/MAPK signaling is a common driver of oncogenesis that can be therapeutically targeted with clinically approved MEK inhibitors. Disease progression on single-agent MEK inhibitors is common, however, and combination therapies are typically required to achieve significant clinical benefit in advanced cancers. Here we focused on identifying MEK inhibitor-based combination therapies in neuroblastoma with mutations that activate the RAS/MAPK signaling pathway, which are rare at diagnosis but frequent in relapsed neuroblastoma. A genome-scale CRISPR-Cas9 functional genomic screen was deployed to identify genes that when knocked out sensitize RAS-mutant neuroblastoma to MEK inhibition. Loss of either CCNC or CDK8, two members of the mediator kinase module, sensitized neuroblastoma to MEK inhibition. Furthermore, small-molecule kinase inhibitors of CDK8 improved response to MEK inhibitors in vitro and in vivo in RAS-mutant neuroblastoma and other adult solid tumors. Transcriptional profiling revealed that loss of CDK8 or CCNC antagonized the transcriptional signature induced by MEK inhibition. When combined, loss of CDK8 or CCNC prevented the compensatory upregulation of progrowth gene expression induced by MEK inhibition. These findings propose a new therapeutic combination for RAS-mutant neuroblastoma and may have clinical relevance for other RAS-driven malignancies. SIGNIFICANCE: Transcriptional adaptation to MEK inhibition is mediated by CDK8 and can be blocked by the addition of CDK8 inhibitors to improve response to MEK inhibitors in RAS-mutant neuroblastoma, a clinically challenging disease.


Subject(s)
Neoplasm Recurrence, Local , Neuroblastoma , Adult , Humans , Cell Line, Tumor , Neoplasm Recurrence, Local/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/pathology , Mutation , Mitogen-Activated Protein Kinase Kinases , Cyclin-Dependent Kinase 8/genetics
9.
Mol Cancer Res ; 20(7): 1035-1046, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35298000

ABSTRACT

Expression of the fusion oncoprotein EWS/FLI causes Ewing sarcoma, an aggressive pediatric tumor characterized by widespread epigenetic deregulation. These epigenetic changes are targeted by novel lysine-specific demethylase-1 (LSD1) inhibitors, which are currently in early-phase clinical trials. Single-agent-targeted therapy often induces resistance, and successful clinical development requires knowledge of resistance mechanisms, enabling the design of effective combination strategies. Here, we used a genome-scale CRISPR-Cas9 loss-of-function screen to identify genes whose knockout (KO) conferred resistance to the LSD1 inhibitor SP-2509 in Ewing sarcoma cell lines. Multiple genes required for mitochondrial electron transport chain (ETC) complexes III and IV function were hits in our screen. We validated this finding using genetic and chemical approaches, including CRISPR KO, ETC inhibitors, and mitochondrial depletion. Further global transcriptional profiling revealed that altered complex III/IV function disrupted the oncogenic program mediated by EWS/FLI and LSD1 and blunted the transcriptomic response to SP-2509. IMPLICATIONS: These findings demonstrate that mitochondrial dysfunction modulates SP-2509 efficacy and suggest that new therapeutic strategies combining LSD1 with agents that prevent mitochondrial dysfunction may benefit patients with this aggressive malignancy.


Subject(s)
Bone Neoplasms , Sarcoma, Ewing , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , Child , Drug Resistance , Gene Expression Regulation, Neoplastic , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Mitochondria/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology
10.
Leukemia ; 36(2): 348-360, 2022 02.
Article in English | MEDLINE | ID: mdl-34341479

ABSTRACT

Despite progress in the treatment of acute lymphoblastic leukemia (ALL), T-cell ALL (T-ALL) has limited treatment options, particularly in the setting of relapsed/refractory disease. Using an unbiased genome-scale CRISPR-Cas9 screen we sought to identify pathway dependencies for T-ALL which could be harnessed for therapy development. Disruption of the one-carbon folate, purine and pyrimidine pathways scored as the top metabolic pathways required for T-ALL proliferation. We used a recently developed inhibitor of SHMT1 and SHMT2, RZ-2994, to characterize the effect of inhibiting these enzymes of the one-carbon folate pathway in T-ALL and found that T-ALL cell lines were differentially sensitive to RZ-2994, with the drug inducing a S/G2 cell cycle arrest. The effects of SHMT1/2 inhibition were rescued by formate supplementation. Loss of both SHMT1 and SHMT2 was necessary for impaired growth and cell cycle arrest, with suppression of both SHMT1 and SHMT2 inhibiting leukemia progression in vivo. RZ-2994 also decreased leukemia burden in vivo and remained effective in the setting of methotrexate resistance in vitro. This study highlights the significance of the one-carbon folate pathway in T-ALL and supports further development of SHMT inhibitors for treatment of T-ALL and other cancers.


Subject(s)
CRISPR-Cas Systems , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/pharmacology , Folic Acid/metabolism , Glycine Hydroxymethyltransferase/antagonists & inhibitors , Methotrexate/pharmacology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Cell Cycle , Cell Proliferation , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/enzymology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prognosis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Cell Death Dis ; 13(6): 551, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35710782

ABSTRACT

Genomic studies have identified recurrent somatic alterations in genes involved in DNA methylation and post-translational histone modifications in acute lymphoblastic leukemia (ALL), suggesting new opportunities for therapeutic interventions. In this study, we identified G9a/EHMT2 as a potential target in T-ALL through the intersection of epigenome-centered shRNA and chemical screens. We subsequently validated G9a with low-throughput CRISPR-Cas9-based studies targeting the catalytic G9a SET-domain and the testing of G9a chemical inhibitors in vitro, 3D, and in vivo T-ALL models. Mechanistically we determined that G9a repression promotes lysosomal biogenesis and autophagic degradation associated with the suppression of sestrin2 (SESN2) and inhibition of glycogen synthase kinase-3 (GSK-3), suggesting that in T-ALL glycolytic dependent pathways are at least in part under epigenetic control. Thus, targeting G9a represents a strategy to exhaust the metabolic requirement of T-ALL cells.


Subject(s)
Histone-Lysine N-Methyltransferase , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , DNA Methylation/genetics , Glycogen Synthase Kinase 3/metabolism , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Humans , Nuclear Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Lymphocytes/metabolism
12.
Cancer Discov ; 12(7): 1760-1781, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35405016

ABSTRACT

Leukemic blasts are immune cells gone awry. We hypothesized that dysregulation of inflammatory pathways contributes to the maintenance of their leukemic state and can be exploited as cell-intrinsic, self-directed immunotherapy. To this end, we applied genome-wide screens to discover genetic vulnerabilities in acute myeloid leukemia (AML) cells implicated in inflammatory pathways. We identified the immune modulator IRF2BP2 as a selective AML dependency. We validated AML cell dependency on IRF2BP2 with genetic and protein degradation approaches in vitro and genetically in vivo. Chromatin and global gene-expression studies demonstrated that IRF2BP2 represses IL1ß/TNFα signaling via NFκB, and IRF2BP2 perturbation results in an acute inflammatory state leading to AML cell death. These findings elucidate a hitherto unexplored AML dependency, reveal cell-intrinsic inflammatory signaling as a mechanism priming leukemic blasts for regulated cell death, and establish IRF2BP2-mediated transcriptional repression as a mechanism for blast survival. SIGNIFICANCE: This study exploits inflammatory programs inherent to AML blasts to identify genetic vulnerabilities in this disease. In doing so, we determined that AML cells are dependent on the transcriptional repressive activity of IRF2BP2 for their survival, revealing cell-intrinsic inflammation as a mechanism priming leukemic blasts for regulated cell death. See related commentary by Puissant and Medyouf, p. 1617. This article is highlighted in the In This Issue feature, p. 1599.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Inflammation/genetics , Leukemia, Myeloid, Acute/genetics , NF-kappa B/metabolism , Signal Transduction
13.
Leukemia ; 36(6): 1585-1595, 2022 06.
Article in English | MEDLINE | ID: mdl-35474100

ABSTRACT

By querying metabolic pathways associated with leukemic stemness and survival in multiple AML datasets, we nominated SLC7A11 encoding the xCT cystine importer as a putative AML dependency. Genetic and chemical inhibition of SLC7A11 impaired the viability and clonogenic capacity of AML cell lines in a cysteine-dependent manner. Sulfasalazine, a broadly available drug with xCT inhibitory activity, had anti-leukemic activity against primary AML samples in ex vivo cultures. Multiple metabolic pathways were impacted upon xCT inhibition, resulting in depletion of glutathione pools in leukemic cells and oxidative stress-dependent cell death, only in part through ferroptosis. Higher expression of cysteine metabolism genes and greater cystine dependency was noted in NPM1-mutated AMLs. Among eight anti-leukemic drugs, the anthracycline daunorubicin was identified as the top synergistic agent in combination with sulfasalazine in vitro. Addition of sulfasalazine at a clinically relevant concentration significantly augmented the anti-leukemic activity of a daunorubicin-cytarabine combination in a panel of 45 primary samples enriched in NPM1-mutated AML. These results were confirmed in vivo in a patient-derived xenograft model. Collectively, our results nominate cystine import as a druggable target in AML and raise the possibility to repurpose sulfasalazine for the treatment of AML, notably in combination with chemotherapy.


Subject(s)
Cystine , Leukemia, Myeloid, Acute , Cell Line, Tumor , Cysteine , Cystine/metabolism , Cystine/therapeutic use , Daunorubicin/pharmacology , Daunorubicin/therapeutic use , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins , Sulfasalazine/pharmacology , Sulfasalazine/therapeutic use
14.
Nat Cancer ; 3(8): 976-993, 2022 08.
Article in English | MEDLINE | ID: mdl-35817829

ABSTRACT

Immunotherapy with anti-GD2 antibodies has advanced the treatment of children with high-risk neuroblastoma, but nearly half of patients relapse, and little is known about mechanisms of resistance to anti-GD2 therapy. Here, we show that reduced GD2 expression was significantly correlated with the mesenchymal cell state in neuroblastoma and that a forced adrenergic-to-mesenchymal transition (AMT) conferred downregulation of GD2 and resistance to anti-GD2 antibody. Mechanistically, low-GD2-expressing cell lines demonstrated significantly reduced expression of the ganglioside synthesis enzyme ST8SIA1 (GD3 synthase), resulting in a bottlenecking of GD2 synthesis. Pharmacologic inhibition of EZH2 resulted in epigenetic rewiring of mesenchymal neuroblastoma cells and re-expression of ST8SIA1, restoring surface expression of GD2 and sensitivity to anti-GD2 antibody. These data identify developmental lineage as a key determinant of sensitivity to anti-GD2 based immunotherapies and credential EZH2 inhibitors for clinical testing in combination with anti-GD2 antibody to enhance outcomes for children with neuroblastoma.


Subject(s)
Gangliosides , Neuroblastoma , Antibodies, Monoclonal , Child , Humans , Immunotherapy , Neoplasm Recurrence, Local/chemically induced , Neuroblastoma/drug therapy
15.
Cancer Cell ; 40(3): 301-317.e12, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35245447

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis. We report a comprehensive proteogenomic analysis of bone marrow biopsies from 252 uniformly treated AML patients to elucidate the molecular pathophysiology of AML in order to inform future diagnostic and therapeutic approaches. In addition to in-depth quantitative proteomics, our analysis includes cytogenetic profiling and DNA/RNA sequencing. We identify five proteomic AML subtypes, each reflecting specific biological features spanning genomic boundaries. Two of these proteomic subtypes correlate with patient outcome, but none is exclusively associated with specific genomic aberrations. Remarkably, one subtype (Mito-AML), which is captured only in the proteome, is characterized by high expression of mitochondrial proteins and confers poor outcome, with reduced remission rate and shorter overall survival on treatment with intensive induction chemotherapy. Functional analyses reveal that Mito-AML is metabolically wired toward stronger complex I-dependent respiration and is more responsive to treatment with the BCL2 inhibitor venetoclax.


Subject(s)
Leukemia, Myeloid, Acute , Proteogenomics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Proteomics
16.
Cancer Cell ; 39(9): 1262-1278.e7, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34329586

ABSTRACT

Fusion-transcription factors (fusion-TFs) represent a class of driver oncoproteins that are difficult to therapeutically target. Recently, protein degradation has emerged as a strategy to target these challenging oncoproteins. The mechanisms that regulate fusion-TF stability, however, are generally unknown. Using CRISPR-Cas9 screening, we discovered tripartite motif-containing 8 (TRIM8) as an E3 ubiquitin ligase that ubiquitinates and degrades EWS/FLI, a driver fusion-TF in Ewing sarcoma. Moreover, we identified TRIM8 as a selective dependency in Ewing sarcoma compared with >700 other cancer cell lines. Mechanistically, TRIM8 knockout led to an increase in EWS/FLI protein levels that was not tolerated. EWS/FLI acts as a neomorphic substrate for TRIM8, defining the selective nature of the dependency. Our results demonstrate that fusion-TF protein stability is tightly regulated and highlight fusion oncoprotein-specific regulators as selective therapeutic targets. This study provides a tractable strategy to therapeutically exploit oncogene overdose in Ewing sarcoma and potentially other fusion-TF-driven cancers.


Subject(s)
Bone Neoplasms/mortality , Carrier Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oncogene Proteins, Fusion/chemistry , Proto-Oncogene Protein c-fli-1/chemistry , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/chemistry , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/mortality , Bone Neoplasms/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival , Gene Knockout Techniques , HEK293 Cells , Humans , Microfilament Proteins/metabolism , Nerve Tissue Proteins/genetics , Oncogene Proteins, Fusion/metabolism , Protein Stability , Proteolysis , Sarcoma, Ewing/metabolism , Trans-Activators/metabolism
17.
Sci Transl Med ; 13(587)2021 03 31.
Article in English | MEDLINE | ID: mdl-33790022

ABSTRACT

The development and survival of cancer cells require adaptive mechanisms to stress. Such adaptations can confer intrinsic vulnerabilities, enabling the selective targeting of cancer cells. Through a pooled in vivo short hairpin RNA (shRNA) screen, we identified the adenosine triphosphatase associated with diverse cellular activities (AAA-ATPase) valosin-containing protein (VCP) as a top stress-related vulnerability in acute myeloid leukemia (AML). We established that AML was the most responsive disease to chemical inhibition of VCP across a panel of 16 cancer types. The sensitivity to VCP inhibition of human AML cell lines, primary patient samples, and syngeneic and xenograft mouse models of AML was validated using VCP-directed shRNAs, overexpression of a dominant-negative VCP mutant, and chemical inhibition. By combining mass spectrometry-based analysis of the VCP interactome and phospho-signaling studies, we determined that VCP is important for ataxia telangiectasia mutated (ATM) kinase activation and subsequent DNA repair through homologous recombination in AML. A second-generation VCP inhibitor, CB-5339, was then developed and characterized. Efficacy and safety of CB-5339 were validated in multiple AML models, including syngeneic and patient-derived xenograft murine models. We further demonstrated that combining DNA-damaging agents, such as anthracyclines, with CB-5339 treatment synergizes to impair leukemic growth in an MLL-AF9-driven AML murine model. These studies support the clinical testing of CB-5339 as a single agent or in combination with standard-of-care DNA-damaging chemotherapy for the treatment of AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Adenosine Triphosphatases/metabolism , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , DNA Repair , Humans , Leukemia, Myeloid, Acute/drug therapy , Mice , Valosin Containing Protein
18.
Cancer Cell ; 39(6): 827-844.e10, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34129824

ABSTRACT

The core cohesin subunit STAG2 is recurrently mutated in Ewing sarcoma but its biological role is less clear. Here, we demonstrate that cohesin complexes containing STAG2 occupy enhancer and polycomb repressive complex (PRC2)-marked regulatory regions. Genetic suppression of STAG2 leads to a compensatory increase in cohesin-STAG1 complexes, but not in enhancer-rich regions, and results in reprogramming of cis-chromatin interactions. Strikingly, in STAG2 knockout cells the oncogenic genetic program driven by the fusion transcription factor EWS/FLI1 was highly perturbed, in part due to altered enhancer-promoter contacts. Moreover, loss of STAG2 also disrupted PRC2-mediated regulation of gene expression. Combined, these transcriptional changes converged to modulate EWS/FLI1, migratory, and neurodevelopmental programs. Finally, consistent with clinical observations, functional studies revealed that loss of STAG2 enhances the metastatic potential of Ewing sarcoma xenografts. Our findings demonstrate that STAG2 mutations can alter chromatin architecture and transcriptional programs to promote an aggressive cancer phenotype.


Subject(s)
Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Cycle Proteins/genetics , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Animals , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Chromosomal Proteins, Non-Histone/metabolism , Enhancer Elements, Genetic , Female , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice, Inbred NOD , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oncogene Proteins, Fusion/genetics , POU Domain Factors/genetics , POU Domain Factors/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Promoter Regions, Genetic , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Xenograft Model Antitumor Assays , Zebrafish/genetics , Cohesins
19.
Cancer Discov ; 10(2): 214-231, 2020 02.
Article in English | MEDLINE | ID: mdl-31771968

ABSTRACT

Spleen tyrosine kinase (SYK) is a nonmutated therapeutic target in acute myeloid leukemia (AML). Attempts to exploit SYK therapeutically in AML have shown promising results in combination with chemotherapy, likely reflecting induced mechanisms of resistance to single-agent treatment in vivo. We conducted a genome-scale open reading frame (ORF) resistance screen and identified activation of the RAS-MAPK-ERK pathway as one major mechanism of resistance to SYK inhibitors. This finding was validated in AML cell lines with innate and acquired resistance to SYK inhibitors. Furthermore, patients with AML with select mutations activating these pathways displayed early resistance to SYK inhibition. To circumvent SYK inhibitor therapy resistance in AML, we demonstrate that a MEK and SYK inhibitor combination is synergistic in vitro and in vivo. Our data provide justification for use of ORF screening to identify resistance mechanisms to kinase inhibitor therapy in AML lacking distinct mutations and to direct novel combination-based strategies to abrogate these. SIGNIFICANCE: The integration of functional genomic screening with the study of mechanisms of intrinsic and acquired resistance in model systems and human patients identified resistance to SYK inhibitors through MAPK signaling in AML. The dual targeting of SYK and the MAPK pathway offers a combinatorial strategy to overcome this resistance.This article is highlighted in the In This Issue feature, p. 161.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Resistance, Neoplasm/genetics , Leukemia, Myeloid, Acute/drug therapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Syk Kinase/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzamides/pharmacology , Benzamides/therapeutic use , Cell Line, Tumor , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Diphenylamine/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Female , Gene Expression Regulation, Leukemic/drug effects , Humans , Indazoles/pharmacology , Indazoles/therapeutic use , Leukemia, Myeloid, Acute/genetics , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutagenesis, Site-Directed , Mutation , Open Reading Frames/genetics , Primary Cell Culture , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Pyrazines/pharmacology , Pyrazines/therapeutic use , Syk Kinase/metabolism , Xenograft Model Antitumor Assays
20.
Cancer Discov ; 10(12): 1894-1911, 2020 12.
Article in English | MEDLINE | ID: mdl-32826232

ABSTRACT

Deciphering the impact of metabolic intervention on response to anticancer therapy may elucidate a path toward improved clinical responses. Here, we identify amino acid-related pathways connected to the folate cycle whose activation predicts sensitivity to MYC-targeting therapies in acute myeloid leukemia (AML). We establish that folate restriction and deficiency of the rate-limiting folate cycle enzyme MTHFR, which exhibits reduced-function polymorphisms in about 10% of Caucasians, induce resistance to MYC targeting by BET and CDK7 inhibitors in cell lines, primary patient samples, and syngeneic mouse models of AML. Furthermore, this effect is abrogated by supplementation with the MTHFR enzymatic product CH3-THF. Mechanistically, folate cycle disturbance reduces H3K27/K9 histone methylation and activates a SPI1 transcriptional program counteracting the effect of BET inhibition. Our data provide a rationale for screening MTHFR polymorphisms and folate cycle status to nominate patients most likely to benefit from MYC-targeting therapies. SIGNIFICANCE: Although MYC-targeting therapies represent a promising strategy for cancer treatment, evidence of predictors of sensitivity to these agents is limited. We pinpoint that folate cycle disturbance and frequent polymorphisms associated with reduced MTHFR activity promote resistance to BET inhibitors. CH3-THF supplementation thus represents a low-risk intervention to enhance their effects.See related commentary by Marando and Huntly, p. 1791.This article is highlighted in the In This Issue feature, p. 1775.


Subject(s)
Folic Acid/metabolism , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Drug Resistance, Neoplasm , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , Proto-Oncogene Proteins c-myc/biosynthesis , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL