Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
Add more filters

Publication year range
1.
Hippocampus ; 28(7): 457-470, 2018 07.
Article in English | MEDLINE | ID: mdl-29742814

ABSTRACT

Technology allowing genetically targeted cells to be modulated by light has revolutionized neuroscience in the past decade, and given rise to the field of optogenetic stimulation. For this, non-native, light activated proteins (e.g., channelrhodopsin) are expressed in a specific cell phenotype (e.g., glutamatergic neurons) in a subset of central nervous system nuclei, and short pulses of light of a narrow wavelength (e.g., blue, 473 nm) are used to modulate cell activity. Cell activity can be increased or decreased depending on which light activated protein is used. We review how the greater precision provided by optogenetics has transformed the study of neural circuits, in terms of cognition and behavior, with a focus on learning and memory. We also explain how optogenetic modulation is facilitating a better understanding of the mechanistic underpinnings of some neurological and psychiatric conditions. Based on this research, we suggest that optogenetics may provide tools to improve memory in neurological conditions, particularly diencephalic amnesia and Alzheimer's disease.


Subject(s)
Memory Disorders/therapy , Optogenetics/methods , Alzheimer Disease/complications , Animals , Dementia/complications , Humans , Memory Disorders/etiology , Optogenetics/trends
3.
Phys Rev Lett ; 115(24): 242501, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26705627

ABSTRACT

We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p^{↑}+p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of 5 standard deviations at high transverse momenta, at high pseudorapidities η>0.5, and for pair masses around the mass of the ρ meson. This is the first direct transversity measurement in p+p collisions.

4.
Phys Rev Lett ; 114(2): 022301, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25635541

ABSTRACT

We present ΛΛ correlation measurements in heavy-ion collisions for Au+Au collisions at sqrt[s_{NN}]=200 GeV using the STAR experiment at the Relativistic Heavy-Ion Collider. The Lednický-Lyuboshitz analytical model has been used to fit the data to obtain a source size, a scattering length and an effective range. Implications of the measurement of the ΛΛ correlation function and interaction parameters for dihyperon searches are discussed.

5.
Phys Rev Lett ; 114(25): 252302, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26197122

ABSTRACT

We present measurements of π(-) and π(+) elliptic flow, v(2), at midrapidity in Au+Au collisions at √[s(NN)]=200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV, as a function of event-by-event charge asymmetry, A(ch), based on data from the STAR experiment at RHIC. We find that π(-) (π(+)) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at √[s(NN)]=27 GeV and higher. At √[s(NN)]=200 GeV, the slope of the difference of v(2) between π(-) and π(+) as a function of A(ch) exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

6.
Phys Rev Lett ; 115(22): 222301, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26650297

ABSTRACT

Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v_{2}{2} and v_{2}{4}, for charged hadrons from U+U collisions at sqrt[s_{NN}]=193 GeV and Au+Au collisions at sqrt[s_{NN}]=200 GeV. Nearly fully overlapping collisions are selected based on the energy deposited by spectators in zero degree calorimeters (ZDCs). Within this sample, the observed dependence of v_{2}{2} on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. We also show that v_{2} vs multiplicity can be better described by models, such as gluon saturation or quark participant models, that eliminate the dependence of the multiplicity on the number of binary nucleon-nucleon collisions.

7.
Phys Rev Lett ; 115(9): 092002, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26371644

ABSTRACT

We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, A_{LL}, in polarized pp collisions at center-of-mass energy sqrt[s]=200 GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC pp data. The measured asymmetries provide evidence at the 3σ level for positive gluon polarization in the Bjorken-x region x>0.05.

8.
Phys Rev Lett ; 113(14): 142301, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25325635

ABSTRACT

We report the first measurement of charmed-hadron (D(0)) production via the hadronic decay channel (D(0) → K(-) + π(+)) in Au+Au collisions at sqrt[s(NN)] = 200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, N(bin), from p+p to central Au+Au collisions. The D(0) meson yields in central Au + Au collisions are strongly suppressed compared to those in p+p scaled by N(bin), for transverse momenta p(T) > 3 GeV/c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate p(T) is also observed. Model calculations including strong charm-medium interactions and coalescence hadronization describe our measurements.

9.
Phys Rev Lett ; 113(9): 092301, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25215979

ABSTRACT

We report the first measurements of the moments--mean (M), variance (σ(2)), skewness (S), and kurtosis (κ)--of the net-charge multiplicity distributions at midrapidity in Au+Au collisions at seven energies, ranging from sqrt[sNN]=7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net charge, and are sensitive to the location of the QCD critical point. We compare the products of the moments, σ(2)/M, Sσ, and κσ(2), with the expectations from Poisson and negative binomial distributions (NBDs). The Sσ values deviate from the Poisson baseline and are close to the NBD baseline, while the κσ(2) values tend to lie between the two. Within the present uncertainties, our data do not show nonmonotonic behavior as a function of collision energy. These measurements provide a valuable tool to extract the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.

10.
Phys Rev Lett ; 112(16): 162301, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24815640

ABSTRACT

Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y=0) are reported in sNN=7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.

11.
Phys Rev Lett ; 112(3): 032302, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24484135

ABSTRACT

We report the beam energy (sqrt[sNN]=7.7-200 GeV) and collision centrality dependence of the mean (M), standard deviation (σ), skewness (S), and kurtosis (κ) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y|<0.5) and within the transverse momentum range 0.4

12.
Phys Rev Lett ; 113(7): 072301, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25170701

ABSTRACT

We report measurements of single- and double-spin asymmetries for W^{±} and Z/γ^{*} boson production in longitudinally polarized p+p collisions at sqrt[s]=510 GeV by the STAR experiment at RHIC. The asymmetries for W^{±} were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

13.
Phys Rev Lett ; 113(2): 022301, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25062167

ABSTRACT

We report the STAR measurements of dielectron (e(+)e(-)) production at midrapidity (|y(ee)|<1) in Au+Au collisions at √[s(NN)]=200 GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 (ρ-like), 0.76-0.80 (ω-like), and 0.98-1.05 (ϕ-like) GeV/c(2). The spectrum in the ω-like and ϕ-like regions can be well described by the hadronic cocktail simulation. In the ρ-like region, however, the vacuum ρ spectral function cannot describe the shape of the dielectron excess. In this range, an enhancement of 1.77±0.11(stat)±0.24(syst)±0.33(cocktail) is determined with respect to the hadronic cocktail simulation that excludes the ρ meson. The excess yield in the ρ-like region increases with the number of collision participants faster than the ω and ϕ yields. Theoretical models with broadened ρ contributions through interactions with constituents in the hot QCD medium provide a consistent description of the dilepton mass spectra for the measurement presented here and the earlier data at the Super Proton Synchrotron energies.

14.
Phys Rev Lett ; 113(5): 052302, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25126911

ABSTRACT

Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.

15.
Phys Rev Lett ; 112(12): 122301, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24724645

ABSTRACT

Azimuthal angular correlations of charged hadrons with respect to the axis of a reconstructed (trigger) jet in Au+Au and p+p collisions at √[s(NN)]=200 GeV in STAR are presented. The trigger jet population in Au+Au collisions is biased toward jets that have not interacted with the medium, allowing easier matching of jet energies between Au+Au and p+p collisions while enhancing medium effects on the recoil jet. The associated hadron yield of the recoil jet is significantly suppressed at high transverse momentum (pTassoc) and enhanced at low pTassoc in 0%-20% central Au+Au collisions compared to p+p collisions, which is indicative of medium-induced parton energy loss in ultrarelativistic heavy-ion collisions.

16.
J Neural Transm (Vienna) ; 121(4): 371-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24306276

ABSTRACT

C-type natriuretic peptide (CNP) is a neurotrophic factor widely expressed in the central nervous system including the basal ganglia, limbic system and hypothalamus. Nothing is known of CNP's role in the human brain but in rodents CNP promotes axon growth and branching, and interacts with dopaminergic function in models of addiction. Because preliminary evidence showed reduced levels in Parkinson's disease (PD), we examined concentrations of CNP peptides in cerebrospinal fluid (CSF) in 146 PD patients from the DATATOP study to determine changes over time in relation to medication status and cognitive function. CNP and an aminoterminal product of proCNP (NTproCNP) were measured in extracts from stored CSF by radioimmunoassay. CSF samples were obtained twice-at enrolment and at the study's endpoint (requirement for levodopa treatment) after treatment with placebo or deprenyl. At enrolment, median baseline concentration of CSF NTproCNP (776 pmol/L, n = 146) was significantly lower than that in a reference group without neurological disorder (1,010 pmol/L, p < 0.001). Concentrations declined significantly during placebo (p = 0.02) and lower values at enrolment were associated with more rapid functional decline (p < 0.01). In contrast, deprenyl-a treatment which delayed the need for levodopa-nullified the time-dependent decline in CSF NTproCNP. In conclusion subnormal CSF NTproCNP which declines with time and associates with increasing functional disability implicates CNP in PD. Concordant clinical and peptide responses to deprenyl suggest that some of the benefits of monoamine oxidase inhibitors in PD are mediated by preserving tissue CNP activity.


Subject(s)
Antiparkinson Agents/therapeutic use , Natriuretic Peptide, C-Type/cerebrospinal fluid , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/drug therapy , Selegiline/therapeutic use , Adult , Aged , Aged, 80 and over , Cognition Disorders/etiology , Female , Humans , Male , Middle Aged , Parkinson Disease/complications , Retrospective Studies , Severity of Illness Index , Time Factors
17.
Adv Neurobiol ; 36: 877-906, 2024.
Article in English | MEDLINE | ID: mdl-38468068

ABSTRACT

In parallel to medical applications, exploring how neurons interact with the artificial interface of implants in the human body can be used to learn about their fundamental behavior. For both fundamental and applied research, it is important to determine the conditions that encourage neurons to maintain their natural behavior during these interactions. Whereas previous biocompatibility studies have focused on the material properties of the neuron-implant interface, here we discuss the concept of fractal resonance - the possibility that favorable connectivity properties might emerge by matching the fractal geometry of the implant surface to that of the neurons.To investigate fractal resonance, we first determine the degree to which neurons are fractal and the impact of this fractality on their functionality. By analyzing three-dimensional images of rat hippocampal neurons, we find that the way their dendrites fork and weave through space is important for generating their fractal-like behavior. By modeling variations in neuron connectivity along with the associated energetic and material costs, we highlight how the neurons' fractal dimension optimizes these constraints. To simulate neuron interactions with implant interfaces, we distort the neuron models away from their natural form by modifying the dendrites' fork and weaving patterns. We find that small deviations can induce large changes in fractal dimension, causing the balance between connectivity and cost to deteriorate rapidly. We propose that implant surfaces should be patterned to match the fractal dimension of the neurons, allowing them to maintain their natural functionality as they interact with the implant.


Subject(s)
Fractals , Neurons , Humans , Rats , Animals , Prostheses and Implants , Hippocampus
18.
Phys Rev Lett ; 110(14): 142301, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-25166982

ABSTRACT

Elliptic flow (v(2)) values for identified particles at midrapidity in Au + Au collisions, measured by the STAR experiment in the beam energy scan at RHIC at sqrt[s(NN)] = 7.7-62.4 GeV, are presented. A beam-energy-dependent difference of the values of v(2) between particles and corresponding antiparticles was observed. The difference increases with decreasing beam energy and is larger for baryons compared to mesons. This implies that, at lower energies, particles and antiparticles are not consistent with the universal number-of-constituent-quark scaling of v(2) that was observed at sqrt[s(NN)] = 200 GeV.

19.
Phys Rev Lett ; 111(5): 052301, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23952389

ABSTRACT

The measurement of J/ψ azimuthal anisotropy is presented as a function of transverse momentum for different centralities in Au+Au collisions at sqrt[s(NN)]=200 GeV. The measured J/ψ elliptic flow is consistent with zero within errors for transverse momentum between 2 and 10 GeV/c. Our measurement suggests that J/ψ particles with relatively large transverse momenta are not dominantly produced by coalescence from thermalized charm quarks, when comparing to model calculations.


Subject(s)
Elementary Particles , Gold/chemistry , Quantum Theory , Anisotropy
20.
Phys Rev Lett ; 108(20): 202301, 2012 May 18.
Article in English | MEDLINE | ID: mdl-23003142

ABSTRACT

STAR's measurements of directed flow (v1) around midrapidity for π±, K±, KS0, p, and p[over ¯] in Au+Au collisions at √[sNN]=200 GeV are presented. A negative v1(y) slope is observed for most of produced particles (π±, K±, KS0, and p[over ¯]). In 5%-30% central collisions, a sizable difference is present between the v1(y) slope of protons and antiprotons, with the former being consistent with zero within errors. The v1 excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. For those models which have calculations of v1 for both pions and protons, none of them can describe v1(y) for pions and protons simultaneously. The hydrodynamics model with a tilted source as currently implemented cannot explain the centrality dependence of the difference between the v1(y) slopes of protons and antiprotons.

SELECTION OF CITATIONS
SEARCH DETAIL