ABSTRACT
This work describes an improved algorithm for spectrophotometric determinations of seawater carbonate ion concentrations ([CO32-]spec) derived from observations of ultraviolet absorbance spectra in lead-enriched seawater. Quality-control assessments of [CO32-]spec data obtained on two NOAA research cruises (2012 and 2016) revealed a substantial intercruise difference in average Δ[CO32-] (the difference between a sample's [CO32-]spec value and the corresponding [CO32-] value calculated from paired measurements of pH and dissolved inorganic carbon). Follow-up investigation determined that this discordance was due to the use of two different spectrophotometers, even though both had been properly calibrated. Here we present an essential methodological refinement to correct [CO32-]spec absorbance data for small but significant instrumental differences. After applying the correction (which, notably, is not necessary for pH determinations from sulfonephthalein dye absorbances) to the shipboard absorbance data, we fit the combined-cruise data set to produce empirically updated parameters for use in processing future (and historical) [CO32-]spec absorbance measurements. With the new procedure, the average Δ[CO32-] offset between the two aforementioned cruises was reduced from 3.7 µmol kg-1 to 0.7 µmol kg-1, which is well within the standard deviation of the measurements (1.9 µmol kg-1). We also introduce an empirical model to calculate in situ carbonate ion concentrations from [CO32-]spec. We demonstrate that these in situ values can be used to determine calcium carbonate saturation states that are in good agreement with those determined by more laborious and expensive conventional methods.
Subject(s)
Calcium Carbonate , Spectrophotometry , Carbon , SeawaterABSTRACT
Puget Sound (Washington, USA) is a large estuary, known for its profitable shellfish aquaculture industry. However, in the past decade, scientists have observed strong acidification, hypoxia, and temperature anomalies in Puget Sound. These co-occurring environmental stressors are a threat to marine ecosystems and shellfish aquaculture. Our research assesses how environmental variability in Puget Sound impacts two ecologically and economically important bivalves, the purple-hinge rock scallop (Crassodoma gigantea) and Mediterranean mussel (Mytilus galloprovincialis). Our study examines the effect of depth and seasonality on the physiology of these two important bivalves to gain insight into ideal grow-out conditions in an aquaculture setting, improving the yield and quality of this sustainable protein source. To do this, we used Hood Canal (located in Puget Sound) as a natural multiple-stressor laboratory, which allowed us to study acclimatization capacity of shellfish in their natural habitat and provide the aquaculture industry information about differences in growth rate, shell strength, and nutritional sources across depths and seasons. Bivalves were outplanted at two depths (5 and 30 m) and collected after 3.5 and 7.5 months. To maximize mussel and scallop growth potential in an aquaculture setting, our results suggest outplanting at 5 m depth, with more favorable oxygen and pH levels. Mussel shell integrity can be improved by placing out at 5 m, regardless of season, however, there were no notable differences in shell strength between depths in scallops. For both species, δ13C values were lowest at 5 m in the winter and δ15N was highest at 30 m regardless of season. Puget Sound's combination of naturally and anthropogenically acidified conditions is already proving to be a challenge for shellfish farmers. Our study provides crucial information to farmers to optimize aquaculture grow-out as we begin to navigate the impacts of climate change.
Subject(s)
Mytilus , Pectinidae , Animals , Ecosystem , Shellfish , AquacultureABSTRACT
Shelled pteropods are widely regarded as bioindicators for ocean acidification, because their fragile aragonite shells are susceptible to increasing ocean acidity. While short-term incubations have demonstrated that pteropod calcification is negatively impacted by ocean acidification, we know little about net calcification in response to varying ocean conditions in natural populations. Here, we examine in situ calcification of Limacina helicina pteropods collected from the California Current Ecosystem, a coastal upwelling system with strong spatial gradients in ocean carbonate chemistry, dissolved oxygen and temperature. Depth-averaged pH ranged from 8.03 in warmer offshore waters to 7.77 in cold CO2-rich waters nearshore. Based on high-resolution micro-CT technology, we showed that shell thickness declined by ~ 37% along the upwelling gradient from offshore to nearshore water. Dissolution marks covered only ~ 2% of the shell surface area and were not associated with the observed variation in shell thickness. We thus infer that pteropods make thinner shells where upwelling brings more acidified and colder waters to the surface. Probably the thinner shells do not result from enhanced dissolution, but are due to a decline in calcification. Reduced calcification of pteropods is likely to have major ecological and biogeochemical implications for the cycling of calcium carbonate in the oceans.
ABSTRACT
Estuaries are recognized as one of the habitats most vulnerable to coastal ocean acidification due to seasonal extremes and prolonged duration of acidified conditions. This is combined with co-occurring environmental stressors such as increased temperature and low dissolved oxygen. Despite this, evidence of biological impacts of ocean acidification in estuarine habitats is largely lacking. By combining physical, biogeochemical, and biological time-series observations over relevant seasonal-to-interannual time scales, this study is the first to describe both the spatial and temporal variation of biological response in the pteropod Limacina helicina to estuarine acidification in association with other stressors. Using clustering and principal component analyses, sampling sites were grouped according to their distribution of physical and biogeochemical variables over space and time. This identified the most exposed habitats and time intervals corresponding to the most severe negative biological impacts across three seasons and three years. We developed a cumulative stress index as a means of integrating spatial-temporal OA variation over the organismal life history. Our findings show that over the 2014-2016 study period, the severity of low aragonite saturation state combined with the duration of exposure contributed to overall cumulative stress and resulted in severe shell dissolution. Seasonally-variable estuaries such as the Salish Sea (Washington, U.S.A.) predispose sensitive organisms to more severe acidified conditions than those of coastal and open-ocean habitats, yet the sensitive organisms persist. We suggest potential environmental factors and compensatory mechanisms that allow pelagic calcifiers to inhabit less favorable habitats and partially offset associated stressors, for instance through food supply, increased temperature, and adaptation of their life history. The novel metric of cumulative stress developed here can be applied to other estuarine environments with similar physical and chemical dynamics, providing a new tool for monitoring biological response in estuaries under pressure from accelerating global change.
Subject(s)
Gastropoda , Seawater , Animals , Ecosystem , Hydrogen-Ion Concentration , WashingtonABSTRACT
Oceanic uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have impacts on societal uses, fisheries resources, and economies. In many large estuaries, anthropogenic CO2-induced acidification is enhanced by strong stratification, long water residence times, eutrophication, and a weak acid-base buffer capacity. In this article, we review how a variety of processes influence aquatic acid-base properties in estuarine waters, including coastal upwelling, river-ocean mixing, air-water gas exchange, biological production and subsequent aerobic and anaerobic respiration, calcium carbonate (CaCO3) dissolution, and benthic inputs. We emphasize the spatial and temporal dynamics of partial pressure of CO2 (pCO2), pH, and calcium carbonate mineral saturation states. Examples from three large estuaries-Chesapeake Bay, the Salish Sea, and Prince William Sound-are used to illustrate how natural and anthropogenic processes and climate change may manifest differently across estuaries, as well as the biological implications of OA on coastal calcifiers.
Subject(s)
Atmosphere/chemistry , Calcium Carbonate/analysis , Carbon Dioxide/analysis , Estuaries , Rivers/chemistry , Seawater/chemistry , Atlantic Ocean , Carbon Cycle , Climate Change , Ecosystem , Eutrophication , Hydrogen-Ion Concentration , Industrial Development , North America , Pacific OceanABSTRACT
Although the effects of climate warming on the chemical and physical properties of lakes have been documented, biotic and ecosystem-scale responses to climate change have been only estimated or predicted by manipulations and models. Here we present evidence that climate warming is diminishing productivity in Lake Tanganyika, East Africa. This lake has historically supported a highly productive pelagic fishery that currently provides 25-40% of the animal protein supply for the populations of the surrounding countries. In parallel with regional warming patterns since the beginning of the twentieth century, a rise in surface-water temperature has increased the stability of the water column. A regional decrease in wind velocity has contributed to reduced mixing, decreasing deep-water nutrient upwelling and entrainment into surface waters. Carbon isotope records in sediment cores suggest that primary productivity may have decreased by about 20%, implying a roughly 30% decrease in fish yields. Our study provides evidence that the impact of regional effects of global climate change on aquatic ecosystem functions and services can be larger than that of local anthropogenic activity or overfishing.
Subject(s)
Ecosystem , Fishes/physiology , Fresh Water , Greenhouse Effect , Africa, Eastern , Animals , Carbon/metabolism , Fishes/classification , Food Chain , Geologic Sediments , Seasons , Temperature , Time FactorsABSTRACT
Ocean acidification (OA) along the US West Coast is intensifying faster than observed in the global ocean. This is particularly true in nearshore regions (<200â¯m) that experience a lower buffering capacity while at the same time providing important habitats for ecologically and economically significant species. While the literature on the effects of OA from laboratory experiments is voluminous, there is little understanding of present-day OA in-situ effects on marine life. Dungeness crab (Metacarcinus magister) is perennially one of the most valuable commercial and recreational fisheries. We focused on establishing OA-related vulnerability of larval crustacean based on mineralogical and elemental carapace to external and internal carapace dissolution by using a combination of different methods ranging from scanning electron microscopy, energy dispersive X-ray spectroscopy, elemental mapping and X-ray diffraction. By integrating carapace features with the chemical observations and biogeochemical model hindcast, we identify the occurrence of external carapace dissolution related to the steepest Ω calcite gradients (∆Ωcal,60) in the water column. Dissolution features are observed across the carapace, pereopods (legs), and around the calcified areas surrounding neuritic canals of mechanoreceptors. The carapace dissolution is the most extensive in the coastal habitats under prolonged (1-month) long exposure, as demonstrated by the use of the model hindcast. Such dissolution has a potential to destabilize mechanoreceptors with important sensory and behavioral functions, a pathway of sensitivity to OA. Carapace dissolution is negatively related to crab larval width, demonstrating a basis for energetic trade-offs. Using a retrospective prediction from a regression models, we estimate an 8.3% increase in external carapace dissolution over the last two decades and identified a set of affected OA-related sublethal pathways to inform future risk assessment studies of Dungeness crabs.
Subject(s)
Brachyura , Animals , Hydrogen-Ion Concentration , Larva , Mechanoreceptors , Retrospective Studies , Seawater , SolubilityABSTRACT
Syntheses of carbonate chemistry spatial patterns are important for predicting ocean acidification impacts, but are lacking in coastal oceans. Here, we show that along the North American Atlantic and Gulf coasts the meridional distributions of dissolved inorganic carbon (DIC) and carbonate mineral saturation state (Ω) are controlled by partial equilibrium with the atmosphere resulting in relatively low DIC and high Ω in warm southern waters and the opposite in cold northern waters. However, pH and the partial pressure of CO2 (pCO2) do not exhibit a simple spatial pattern and are controlled by local physical and net biological processes which impede equilibrium with the atmosphere. Along the Pacific coast, upwelling brings subsurface waters with low Ω and pH to the surface where net biological production works to raise their values. Different temperature sensitivities of carbonate properties and different timescales of influencing processes lead to contrasting property distributions within and among margins.
ABSTRACT
Resource managers at the state, federal, and tribal levels make decisions on a weekly to quarterly basis, and fishers operate on a similar timeframe. To determine the potential of a support tool for these efforts, a seasonal forecast system is experimented with here. JISAO's Seasonal Coastal Ocean Prediction of the Ecosystem (J-SCOPE) features dynamical downscaling of regional ocean conditions in Washington and Oregon waters using a combination of a high-resolution regional model with biogeochemistry and forecasts from NOAA's Climate Forecast System (CFS). Model performance and predictability were examined for sea surface temperature (SST), bottom temperature, bottom oxygen, pH, and aragonite saturation state through model hindcasts, reforecast, and forecast comparisons with observations. Results indicate J-SCOPE forecasts have measurable skill on seasonal timescales. Experiments suggest that seasonal forecasting of ocean conditions important for fisheries is possible with the right combination of components. Those components include regional predictability on seasonal timescales of the physical environment from a large-scale model, a high-resolution regional model with biogeochemistry that simulates seasonal conditions in hindcasts, a relationship with local stakeholders, and a real-time observational network. Multiple efforts and approaches in different regions would advance knowledge to provide additional tools to fishers and other stakeholders.
ABSTRACT
Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems.