ABSTRACT
Despite advances in the development of new vaccines, there are still some diseases with no vaccine solutions. Therefore, further efforts are required to more comprehensively discern the different antigenic components of these microorganisms on a molecular level. This review summarizes advancement in the development of new carbohydrate-based vaccines. Following traditional vaccine counterparts, the carbohydrate-based vaccines introduced a new approach in fighting infectious diseases. Carbohydrates have played various roles in the development of carbohydrate-based vaccines, which are described in this review, including carbohydrates acting as antigens, carriers or targeting moieties. Carbohydrate-based vaccines against infectious diseases, such as group A streptococcus, meningococcal meningitis and human immunodeficiency virus, are also discussed. A number of carbohydrate- based vaccines, such as Pneumovax 23, Menveo and Pentacel, have been successfully marketed in the past few years and there is a promising standpoint for many more to come in the near future.
Subject(s)
Carbohydrates/administration & dosage , Vaccines/administration & dosage , Animals , Communicable Disease Control , Communicable Diseases , HumansABSTRACT
AIM: Systematically evaluate lipid core peptide vaccine delivery platforms to identify core features promoting strong CD8(+) T-cell responses. MATERIALS & METHODS: Three different self-adjuvanting lipid core peptide nanovaccines each comprising four copies of the dominant ovalbumin CD8(+) T-cell epitope and varying in the utilization of a polylysine or glucose core with 2-amino-hexadecanoic acid (C16) or 2-amino-dodecanoic acid (C12) lipids were synthesized. Vaccines were tested for ability to induce CD8(+) T-cell responses and inhibit tumor growth in vivo. RESULTS: The construct utilizing C12 lipids and polylysine core induced very robust effector T cells shown to have in vivo effector capability as demonstrated by in vivo cytotoxicity and ability to inhibit tumor growth as well as modulation of dendritic cell activation. CONCLUSION: The C12 polylysine platform was an effective configuration for induction of potent CD8(+) T-cell responses.