Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Opt Express ; 25(22): 26792-26801, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092164

ABSTRACT

For photon-counting applications at ultraviolet wavelengths, there are currently no detectors that combine high efficiency (> 50%), sub-nanosecond timing resolution, and sub-Hz dark count rates. Superconducting nanowire single-photon detectors (SNSPDs) have seen success over the past decade for photon-counting applications in the near-infrared, but little work has been done to optimize SNSPDs for wavelengths below 400 nm. Here, we describe the design, fabrication, and characterization of UV SNSPDs operating at wavelengths between 250 and 370 nm. The detectors have active areas up to 56 µm in diameter, 70 - 80% efficiency at temperatures up to 4.2 K, timing resolution down to 60 ps FWHM, blindness to visible and infrared photons, and dark count rates of ∼ 0.25 counts/hr for a 56 µm diameter pixel. These performance metrics make UV SNSPDs ideal for applications in trapped-ion quantum information processing, lidar studies of the upper atmosphere, UV fluorescent-lifetime imaging microscopy, and photon-starved UV astronomy.

2.
APL Photonics ; 6(5)2021.
Article in English | MEDLINE | ID: mdl-37621960

ABSTRACT

We developed superconducting nanowire single-photon detectors based on tungsten silicide, which show saturated internal detection efficiency up to a wavelength of 10 µm. These detectors are promising for applications in the mid-infrared requiring sub-nanosecond timing, ultra-high gain stability, low dark counts, and high efficiency, such as chemical sensing, LIDAR, dark matter searches, and exoplanet spectroscopy.

3.
Nat Electron ; 2(10)2019.
Article in English | MEDLINE | ID: mdl-32118196

ABSTRACT

A number of current approaches to quantum and neuromorphic computing use superconductors as the basis of their platform or as a measurement component, and will need to operate at cryogenic temperatures. Semiconductor systems are typically proposed as a top-level control in these architectures, with low-temperature passive components and intermediary superconducting electronics acting as the direct interface to the lowest-temperature stages. The architectures, therefore, require a low-power superconductor-semiconductor interface, which is not currently available. Here we report a superconducting switch that is capable of translating low-voltage superconducting inputs directly into semiconductor-compatible (above 1,000 mV) outputs at kelvin-scale temperatures (1K or 4 K). To illustrate the capabilities in interfacing superconductors and semiconductors, we use it to drive a light-emitting diode (LED) in a photonic integrated circuit, generating photons at 1K from a low-voltage input and detecting them with an on-chip superconducting single-photon detector. We also characterize our device's timing response (less than 300 ps turn-on, 15 ns turn-off), output impedance (greater than 1MΩ), and energy requirements (0.18fJ/µm2,3.24mV/nW).

SELECTION OF CITATIONS
SEARCH DETAIL