ABSTRACT
Trichoderma harzianum is a filamentous fungus that can act as a mycoparasite, saprophyte, or a plant symbiotic. It is widely used as a biological control agent against phytopathogenic fungi and can also be used for plant growth promotion and biofortification. Interaction between T. harzianum and phytopathogenic fungi involves mycoparasitism, competition, and antibiosis. Extracellular vesicles (EVs) have been described as presenting a central role in mechanisms of communication and interaction among fungus and their hosts. In this study, we characterized extracellular vesicles of T. harzianum produced during growth in the presence of glucose or S. sclerotiorum mycelia. A set of vesicular proteins was identified using proteomic approach, mainly presenting predicted signal peptides.
Subject(s)
Extracellular Vesicles , Hypocreales , Trichoderma , Trichoderma/metabolism , ProteomicsABSTRACT
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint destruction and severe morbidity. Cigarette smoking (CS) can exacerbate the incidence and severity of RA. Although Th17 cells and the Aryl hydrocarbon receptor (AhR) have been implicated, the mechanism by which CS induces RA development remains unclear. Here, using transcriptomic analysis, we show that microRNA-132 is specifically induced in Th17 cells in the presence of either AhR agonist or CS-enriched medium. miRNA-132 thus induced is packaged into extracellular vesicles produced by Th17 and acts as a proinflammatory mediator increasing osteoclastogenesis through the down-regulation of COX2. In vivo, articular knockdown of miR-132 in murine arthritis models reduces the number of osteoclasts in the joints. Clinically, RA patients express higher levels of miR-132 than do healthy individuals. This increase is further elevated by cigarette smoking. Together, these results reveal a hitherto unrecognized mechanism by which CS could exacerbate RA and further advance understanding of the impact of environmental factors on the pathogenesis of chronic inflammatory diseases.
Subject(s)
Arthritis, Rheumatoid/genetics , MicroRNAs/genetics , Osteogenesis/physiology , Adult , Aged , Animals , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cigarette Smoking/adverse effects , Female , Humans , Male , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Middle Aged , Osteoclasts/metabolism , Osteogenesis/drug effects , Receptors, Aryl Hydrocarbon/metabolism , Smoke , Th17 Cells/drug effects , Th17 Cells/metabolism , Tobacco Smoke Pollution/adverse effectsABSTRACT
Trichophyton rubrum is a human fungal pathogen that causes dermatophytosis, an infection that affects keratinized tissues. Integrated molecular signals coordinate mechanisms that control pathogenicity. Transcriptional regulation is a core regulation of relevant fungal processes. Previous RNA sequencing data revealed that the absence of the transcription factor StuA resulted in the differential expression of the MAPK-related high glycerol osmolarity gene (hog1) in T. rubrum. Here we validated the role of StuA in regulating the transcript levels of hog1. We showed through RT-qPCR that transcriptional regulation controls hog1 levels in response to glucose, keratin, and co-culture with human keratinocytes. In addition, we also detected hog1 pre-mRNA transcripts that underwent alternative splicing, presenting intron retention in a StuA-dependent mechanism. Our findings suggest that StuA and alternative splicing simultaneously, but not dependently, coordinate hog1 transcript levels in T. rubrum. As a means of preventing and treating dermatophytosis, our results contribute to the search for new potential drug therapies based on the molecular aspects of signaling pathways in T. rubrum.
Subject(s)
Alternative Splicing , Arthrodermataceae , Gene Expression Regulation, Fungal , Mitogen-Activated Protein Kinases , Tinea , Transcription Factors , Humans , Arthrodermataceae/genetics , Arthrodermataceae/metabolism , Glucose/metabolism , Keratinocytes/microbiology , Keratins/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Real-Time Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism , Tinea/metabolism , Tinea/microbiologyABSTRACT
Multiple organ dysfunction is the most severe outcome of sepsis progression and is highly correlated with a worse prognosis. Excessive neutrophil extracellular traps (NETs) are critical players in the development of organ failure during sepsis. Therefore, interventions targeting NET release would likely effectively prevent NET-based organ injury associated with this disease. Herein, we demonstrate that the pore-forming protein gasdermin D (GSDMD) is active in neutrophils from septic humans and mice and plays a crucial role in NET release. Inhibition of GSDMD with disulfiram or genic deletion abrogated NET formation, reducing multiple organ dysfunction and sepsis lethality. Mechanistically, we demonstrate that during sepsis, activation of the caspase-11/GSDMD pathway controls NET release by neutrophils during sepsis. In summary, our findings uncover a novel therapeutic use for disulfiram and suggest that GSDMD is a therapeutic target to improve sepsis treatment.
Subject(s)
Extracellular Traps/genetics , Gene Deletion , Intracellular Signaling Peptides and Proteins/genetics , Multiple Organ Failure/genetics , Phosphate-Binding Proteins/genetics , Sepsis/genetics , Acetaldehyde Dehydrogenase Inhibitors/therapeutic use , Adoptive Transfer , Aged , Animals , Cells, Cultured , Disulfiram/therapeutic use , Female , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Male , Mice, Inbred C57BL , Middle Aged , Multiple Organ Failure/pathology , Multiple Organ Failure/therapy , Phosphate-Binding Proteins/antagonists & inhibitors , Sepsis/pathology , Sepsis/therapyABSTRACT
Aspergillus fumigatus is an opportunistic fungal pathogen that secretes an array of immune-modulatory molecules, including secondary metabolites (SMs), which contribute to enhancing fungal fitness and growth within the mammalian host. Gliotoxin (GT) is a SM that interferes with the function and recruitment of innate immune cells, which are essential for eliminating A. fumigatus during invasive infections. We identified a C6 Zn cluster-type transcription factor (TF), subsequently named RglT, important for A. fumigatus oxidative stress resistance, GT biosynthesis and self-protection. RglT regulates the expression of several gli genes of the GT biosynthetic gene cluster, including the oxidoreductase-encoding gene gliT, by directly binding to their respective promoter regions. Subsequently, RglT was shown to be important for virulence in a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA). Homologues of RglT and GliT are present in eurotiomycete and sordariomycete fungi, including the non-GT-producing fungus A. nidulans, where a conservation of function was described. Phylogenetically informed model testing led to an evolutionary scenario in which the GliT-based resistance mechanism is ancestral and RglT-mediated regulation of GliT occurred subsequently. In conclusion, this work describes the function of a previously uncharacterised TF in oxidative stress resistance, GT biosynthesis and self-protection in both GT-producing and non-producing Aspergillus species.
Subject(s)
Aspergillosis , Aspergillus fumigatus/pathogenicity , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/physiology , Gliotoxin/biosynthesis , Transcription Factors/metabolism , Animals , Aspergillosis/metabolism , Aspergillosis/microbiology , Aspergillus fumigatus/metabolism , Mice , Oxidative Stress/physiology , Virulence/physiologyABSTRACT
Several studies have shown the immunomodulatory effects of extracellular vesicles (EVs) released by pathogenic fungi. Herein, we discuss the data regarding the immunomodulatory properties of fungal EVs, but also of EVs produced by infected leukocytes. This characterizes a two-way path, in which both host and fungal EVs could coexist and play crucial roles in disease progression or protection in fungal infections. We suggest that EVs can dictate the progress of fungal diseases, and their potential as therapeutic targets.
Subject(s)
Extracellular Vesicles , Mycoses , Fungi , Humans , LeukocytesABSTRACT
Aspergillus fumigatus causes invasive aspergillosis, the most common life-threatening fungal disease of immuno-compromised humans. The treatment of disseminated infections with antifungal drugs, including echinocandin cell wall biosynthesis inhibitors, is increasingly challenging due to the rise of drug-resistant pathogens. The fungal calcium responsive calcineurin-CrzA pathway influences cell morphology, cell wall composition, virulence, and echinocandin resistance. A screen of 395 A. fumigatus transcription factor mutants identified nine transcription factors important to calcium stress tolerance, including CrzA and ZipD. Here, comparative transcriptomics revealed CrzA and ZipD regulated the expression of shared and unique gene networks, suggesting they participate in both converged and distinct stress response mechanisms. CrzA and ZipD additively promoted calcium stress tolerance. However, ZipD also regulated cell wall organization, osmotic stress tolerance and echinocandin resistance. The absence of ZipD in A. fumigatus caused a significant virulence reduction in immunodeficient and immunocompetent mice. The ΔzipD mutant displayed altered cell wall organization and composition, while being more susceptible to macrophage killing and eliciting an increased pro-inflammatory cytokine response. A higher number of neutrophils, macrophages and activated macrophages were found in ΔzipD infected mice lungs. Collectively, this shows that ZipD-mediated regulation of the fungal cell wall contributes to the evasion of pro-inflammatory responses and tolerance of echinocandin antifungals, and in turn promoting virulence and complicating treatment options.
Subject(s)
Aspergillus fumigatus/pathogenicity , Calcium/adverse effects , Drug Resistance, Fungal , Pulmonary Aspergillosis/microbiology , Transcription Factors/genetics , Animals , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/genetics , Caspofungin , Cell Wall/metabolism , Disease Models, Animal , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Gene Regulatory Networks , Mice , Mutation , Pulmonary Aspergillosis/immunology , Stress, Physiological , VirulenceABSTRACT
Outer membrane vesicles (OMVs) are lipid nanoparticles released by Gram-negative bacteria, which play multiple roles in bacterial physiology and adaptation to diverse environments. In this work, we demonstrate that OMVs released by the environmental pathogen Chromobacterium violaceum deliver the antimicrobial compound violacein to competitor bacteria, mediating its toxicity in vivo at a long distance. OMVs purified by ultracentrifugation from the wild-type strain, but not from a violacein-abrogated mutant ΔvioABCDE, contained violacein and inhibited several Gram-positive bacteria. Competition tests using co-culture and transwell assays indicated that the C. violaceum wild-type strain killed Staphylococcus aureus better than the ΔvioABCDE mutant strain. We found that C. violaceum achieves growth phase-dependent OMV release by the concerted expression of two quorum sensing (QS)-regulated pathways, namely violacein biosynthesis and VacJ/Yrb system. Although both pathways were activated at high cell density in a QS-dependent manner, the effect on vesiculation was the opposite. While the ΔvioABCDE mutant produced twofold fewer vesicles than the wild-type strain, indicating that violacein induces OMV biogenesis for its own delivery, the ΔvacJ and ΔyrbE mutants were hypervesiculating strains. Our findings uncovered QS-regulated pathways involved in OMV biogenesis used by C. violaceum to package violacein into OMVs for interbacterial competition.
Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane , Chromobacterium/metabolism , Indoles/metabolism , Quorum Sensing , Staphylococcus aureus/growth & developmentABSTRACT
The available antifungal therapeutic arsenal is limited. The search for alternative drugs with fewer side effects and new targets remains a major challenge. Decyl gallate (G14) is a derivative of gallic acid with a range of biological activities and broad-spectrum antifungal activity. Previously, our group demonstrated the promising anti-Paracoccidioides activity of G14. In this work, to evaluate the antifungal characteristics of G14 for Paracoccidioides lutzii, a chemical-genetic interaction analysis was conducted on a Saccharomyces cerevisiae model. N-glycosylation and/or the unfolded protein response pathway was identified as a high-confidence process for drug target prediction. The overactivation of unfolded protein response (UPR) signaling was confirmed using this model with IRE1/ATF6/PERK genes tagged with green fluorescent protein (GFP). In P. lutzii, this prediction was confirmed by the low activity of glycosylated enzymes [α-(1,3)-glucanase, N-acetyl-ß-d-glucosaminidase (NAGase), and α-(1,4)-amylase], by hyperexpression of genes involved with the UPR and glycosylated enzymes, and by the reduction in the amounts of glycosylated proteins and chitin. All of these components are involved in fungal cell wall integrity and are dependent on the N-glycosylation process. This loss of integrity was confirmed by the reduction in mitochondrial activity, impaired budding, enhancement of wall permeability, and a decrease in viability. These events led to a reduction of the ability of fungi to adhere on human lung epithelial cells (A549) in vitro Therefore, G14 may have an important role in balancing the inflammatory reaction caused by fungal infection, without interfering with the microbicidal activity of nitric oxide. This work provides new information on the activity of G14, a potential anti-Paracoccidioides compound.
Subject(s)
Antifungal Agents/pharmacology , Gallic Acid/pharmacology , Glycosylation/drug effects , Paracoccidioides/drug effects , A549 Cells , Cell Line, Tumor , Cell Wall/drug effects , Cell Wall/metabolism , Chitin/metabolism , Fungal Proteins/metabolism , Green Fluorescent Proteins/metabolism , Humans , Lung/microbiology , Mitochondria/drug effects , Mitochondria/metabolism , Paracoccidioides/metabolism , Paracoccidioidomycosis/drug therapy , Paracoccidioidomycosis/metabolism , Paracoccidioidomycosis/microbiology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Unfolded Protein Response/drug effectsABSTRACT
Paracoccidioidomycosis is the most prevalent systemic mycosis in Latin America. It is caused by the temperature-dependent dimorphic fungus Paracoccidioides brasiliensis. The P. brasiliensis cell wall is a dynamic outer structure, composed of a network of glycoproteins and polysaccharides, such as chitin, glucan and N-glycosylated proteins. These glycoproteins can interact with the host to affect infection rates, and are known to perform other functions. We inhibited N-linked glycosylation using tunicamycin (TM), and then evaluated the expression of P. brasiliensis genes related to cell wall remodeling. Our results suggest that cell wall synthesis related genes, such as ß-1,3-glucanosyltransferase (PbGEL3), 1,3-ß-D-glucan synthase (PbFKS1), and α-1,4-amylase (PbAMY), as well as cell wall degrading related genes, such as N-acetyl-ß-D-glucosaminidase (PbNAG1), α-1,3-glucanase (PbAGN), and ß-1,3-glucanase (PbBGN1 and PbBGN2), have their expression increased by the N-glycosylation inhibition, as detected by qRT-PCR. The observed increases in gene expression levels reveal possible compensatory mechanisms for diminished enzyme activity due to the lack of glycosylation caused by TM.
ABSTRACT
Enzymes play key roles in fungal pathogenesis. Manipulation of enzyme expression or activity can significantly alter the infection process, and enzyme expression profiles can be a hallmark of disease. Hence, enzymes are worthy targets for better understanding pathogenesis and identifying new options for combatting fungal infections. Advances in genomics, proteomics, transcriptomics, and mass spectrometry have enabled the identification and characterization of new fungal enzymes. This review focuses on recent developments in the virulence-associated enzymes from Cryptococcus neoformans. The enzymatic suite of C. neoformans has evolved for environmental survival, but several of these enzymes play a dual role in colonizing the mammalian host. We also discuss new therapeutic and diagnostic strategies that could be based on the underlying enzymology.
Subject(s)
Cryptococcus neoformans/enzymology , Cryptococcus neoformans/pathogenicity , Animals , Drug Design , Drug Resistance, Fungal , Humans , Melanins/biosynthesis , Polysaccharides/metabolism , VirulenceABSTRACT
The cell wall of Paracoccidioides brasiliensis, which consists of a network of polysaccharides and glycoproteins, is essential for fungal pathogenesis. We have previously reported that N-glycosylation of proteins such as N-acetyl-ß-D-glucosaminidase is required for the growth and morphogenesis of P. brasiliensis. In the present study, we investigated the influence of tunycamicin (TM)-mediated inhibition of N-linked glycosylation on α- and ß-(1,3)-glucanases and on α-(1,4)-amylase in P. brasiliensis yeast and mycelium cells. The addition of 15 µg/ml TM to the fungal cultures did not interfere with either α- or ß-(1,3)-glucanase production and secretion. Moreover, incubation with TM did not alter α- and ß-(1,3)-glucanase activity in yeast and mycelium cell extracts. In contrast, α-(1,4)-amylase activity was significantly reduced in underglycosylated yeast and mycelium extracts after exposure to TM. In spite of its importance for fungal growth and morphogenesis, N-glycosylation was not required for glucanase activities. This is surprising because these activities are directed to wall components that are crucial for fungal morphogenesis. On the other hand, N-glycans were essential for α-(1,4)-amylase activity involved in the production of malto-oligosaccharides that act as primer molecules for the biosynthesis of α-(1,3)-glucan. Our results suggest that reduced fungal α-(1,4)-amylase activity affects cell wall composition and may account for the impaired growth of underglycosylated yeast and mycelium cells.
Subject(s)
Anti-Infective Agents/pharmacology , Glucan 1,3-beta-Glucosidase/metabolism , Glycoside Hydrolases/metabolism , Glycosylation/drug effects , Paracoccidioides/growth & development , Tunicamycin/pharmacology , alpha-Amylases/metabolism , Paracoccidioides/cytology , Paracoccidioides/drug effects , Paracoccidioides/enzymologyABSTRACT
Extracellular vesicles (EVs) are membrane-enclosed nanoparticles that transport several biomolecules and are involved in important mechanisms and functions related to the pathophysiology of fungal diseases. EVs from Paracoccidioides brasiliensis, the main causative agent of Paracoccidioidomycosis (PCM), modulate the immune response of macrophages. In this study, we assessed the EVs proteome from a virulent P. brasiliensis isolated from granulomatous lesions and compared their immunomodulatory ability with EVs isolated from the fungus before the animal passage (control EVs) when challenging macrophages and dendritic cells (DCs). Proteome showed that virulent EVs have a higher abundance of virulence factors such as GP43, protein 14-3-3, GAPDH, as well as virulence factors never described in PCM, such as aspartyl aminopeptidase and a SidJ analogue compared with control EVs. Virulent extracellular vesicles induced higher expression of TLR4 and Dectin-1 than control EVs in macrophages and dendritic cells (DCs). In opposition, a lower TLR2 expression was induced by virulent EVs. Additionally, virulent EVs induced lower expression of CD80, CD86 and TNF-α, but promoted a higher expression of IL-6 and IL-10, suggesting that EVs isolated from virulent P. brasiliensis-yeast promote a milder DCs and macrophage maturation. Herein, we showed that EVs from virulent fungi stimulated a higher frequency of Th1/Tc1, Th17, and Treg cells, which gives new insights into fungal extracellular vesicles. Taken together, our results suggest that P. brasiliensis utilizes its EVs as virulence bags that manipulate the immune system in its favour, creating a milder immune response and helping with fungal evasion from the immune system.
Subject(s)
Extracellular Vesicles , Lectins, C-Type , Paracoccidioides , Paracoccidioidomycosis , Animals , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Proteome , Paracoccidioidomycosis/microbiology , Extracellular Vesicles/metabolism , Virulence FactorsABSTRACT
Introduction: Breast cancer is a significant public health problem around the world, ranking first in deaths due to cancer in females. The therapy to fight breast cancer involves different methods, including conventional chemotherapy. However, the acquired resistance that tumors develop during the treatment is still a central cause of cancer-associated deaths. One mechanism that induces drug resistance is cell communication via extracellular vesicles (EVs), which can carry efflux transporters and miRNA that increase sensitive cells' survivability to chemotherapy. Methods: Our study investigates the transcription changes modulated by EVs from tamoxifen- and doxorubicin-resistant breast cancer cells in sensitive cells and how these changes may induce acquired drug resistance, inhibit apoptosis, and increase survivability in the sensitive cells. Additionally, we exposed human macrophages to resistant EVs to understand the influence of EVs on immune responses. Results: Our results suggest that the acquired drug resistance is associated with the ability of resistant EVs to upregulate several transporter classes, which are directly related to the increase of cell viability and survival of sensitive cells exposed to EVs before a low-dose drug treatment. In addition, we show evidence that resistant EVs may downregulate immune system factors to evade detection and block cell death by apoptosis in sensitive breast cancer cells. Our data also reveals that human macrophages in contact with resistant EVs trigger a pro-inflammatory cytokine secretion profile, an effect that may be helpful for future immunotherapy studies. Discussion: These findings are the first transcriptome-wide analysis of cells exposed to resistant EVs, supporting that resistant EVs are associated with the acquired drug resistance process during chemotherapy by modulating different aspects of sensitive cancer cells that coffer the chemoresistance.
Subject(s)
Breast Neoplasms , Doxorubicin , Drug Resistance, Neoplasm , Extracellular Vesicles , Macrophages , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Breast Neoplasms/immunology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Macrophages/immunology , Macrophages/metabolism , Doxorubicin/pharmacology , Tamoxifen/pharmacology , Cell Line, Tumor , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effectsABSTRACT
Aspergillus fumigatus represents a public health problem due to the high mortality rate in immunosuppressed patients and the emergence of antifungal-resistant isolates. Protein acetylation is a crucial post-translational modification that controls gene expression and biological processes. The strategic manipulation of enzymes involved in protein acetylation has emerged as a promising therapeutic approach for addressing fungal infections. Sirtuins, NAD+-dependent lysine deacetylases, regulate protein acetylation and gene expression in eukaryotes. However, their role in the human pathogenic fungus A. fumigatus remains unclear. This study constructs six single knockout strains of A. fumigatus and a strain lacking all predicted sirtuins (SIRTKO). The mutant strains are viable under laboratory conditions, indicating that sirtuins are not essential genes. Phenotypic assays suggest sirtuins' involvement in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. Deletion of sirE attenuates virulence in murine and Galleria mellonella infection models. The absence of SirE alters the acetylation status of proteins, including histones and non-histones, and triggers significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.
Subject(s)
Aspergillosis , Aspergillus fumigatus , Sirtuins , Aspergillus fumigatus/pathogenicity , Aspergillus fumigatus/genetics , Aspergillus fumigatus/enzymology , Sirtuins/genetics , Sirtuins/metabolism , Virulence , Animals , Mice , Aspergillosis/microbiology , Aspergillosis/drug therapy , Acetylation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Virulence Factors/genetics , Virulence Factors/metabolism , Moths/microbiologyABSTRACT
Xyloglucan is a major structural polysaccharide of the primary (growing) cell wall of higher plants. It consists of a cellulosic backbone (beta-1,4-linked glucosyl residues) that is frequently substituted with side chains. This report describes Aspergillus nidulans strain A773 recombinant secretion of a dimeric xyloglucan-specific endo-ß-1,4-glucanohydrolase (XegA) cloned from Aspergillus niveus. The ORF of the A. niveus xegA gene is comprised of 714 nucleotides, and encodes a 238 amino acid protein with a calculated molecular weight of 23.5kDa and isoelectric point of 4.38. The optimal pH and temperature were 6.0 and 60°C, respectively. XegA generated a xyloglucan-oligosaccharides (XGOs) pattern similar to that observed for cellulases from family GH12, i.e., demonstrating that its mode of action includes hydrolysis of the glycosidic linkages between glucosyl residues that are not branched with xylose. In contrast to commercial lichenase, mixed linkage beta-glucan (lichenan) was not digested by XegA, indicating that the enzyme did not cleave glucan ß-1,3 or ß-1,6 bonds. The far-UV CD spectrum of the purified enzyme indicated a protein rich in ß-sheet structures as expected for GH12 xyloglucanases. Thermal unfolding studies displayed two transitions with mid-point temperatures of 51.3°C and 81.3°C respectively, and dynamic light scattering studies indicated that the first transition involves a change in oligomeric state from a dimeric to a monomeric form. Since the enzyme is a predominantly a monomer at 60°C, the enzymatic assays demonstrated that XegA is more active in its monomeric state.
Subject(s)
Aspergillus/chemistry , Cell Wall/chemistry , Cellulase/chemistry , Fungal Proteins/chemistry , Glucans/chemistry , Xylans/chemistry , Amino Acid Sequence , Aspergillus/enzymology , Aspergillus nidulans/genetics , Cell Wall/enzymology , Cellulase/genetics , Cellulase/metabolism , Circular Dichroism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glucans/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Hydrogen-Ion Concentration , Isoelectric Point , Kinetics , Light , Molecular Sequence Data , Molecular Weight , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Scattering, Radiation , Substrate Specificity , Temperature , Xylans/metabolismABSTRACT
Fungal infections are a serious global concern because of their ability to spread and colonize host tissues in immunocompromised individuals. Such infections have been frequently reported worldwide and are currently gaining clinical research relevance owing to their resistant character, representing a bottleneck in treating affected people. Resistant fungi are an emergent public health threat. The upsurge of such pathogens has led to new research toward unraveling the destructive potential evoked by these species. Some fungi-grouped into Candida, Aspergillus, and Cryptococcus-are causative agents of severe and systemic infections. They are associated with high mortality rates and have recently been described as sources of coinfection in COVID-hospitalized patients. Despite the efforts to elucidate the challenges of colonization, dissemination, and infection severity, the immunopathogenesis of fungal diseases remains a pivotal characteristic in fungal burden elimination. The struggle between the host immune system and the physiological strategies of the fungi to maintain cellular viability is complex. In this brief review, we highlight the relevance of drug resistance phenotypes in fungi of clinical significance, taking into consideration their physiopathology and how the scientific community could orchestrate their efforts to avoid fungal infection dissemination and deaths.
ABSTRACT
The fungal cell wall (FCW) is a dynamic structure responsible for the maintenance of cellular homeostasis, and is essential for modulating the interaction of the fungus with its environment. It is composed of proteins, lipids, pigments and polysaccharides, including chitin. Chitin synthesis is catalyzed by chitin synthases (CS), and up to eight CS-encoding genes can be found in Aspergillus species. This review discusses in detail the chitin synthesis and regulation in Aspergillus species, and how manipulation of chitin synthesis pathways can modulate fungal growth, enzyme production, virulence and susceptibility to antifungal agents. More specifically, the metabolic steps involved in chitin biosynthesis are described with an emphasis on how the initiation of chitin biosynthesis remains unknown. A description of the classification, localization and transport of CS was also made. Chitin biosynthesis is shown to underlie a complex regulatory network, with extensive cross-talks existing between the different signaling pathways. Furthermore, pathways and recently identified regulators of chitin biosynthesis during the caspofungin paradoxical effect (CPE) are described. The effect of a chitin on the mammalian immune system is also discussed. Lastly, interference with chitin biosynthesis may also be beneficial for biotechnological applications. Even after more than 30 years of research, chitin biosynthesis remains a topic of current interest in mycology.
ABSTRACT
Fungal extracellular vesicles (EVs) mediate intra- and interspecies communication and are critical in host-fungus interaction, modulating inflammation and immune responses. In this study, we evaluated the in vitro pro- and anti-inflammatory properties of Aspergillus fumigatus EVs over innate leukocytes. A. fumigatus EVs induced a partial proinflammatory response by macrophages, characterized by increased tumor necrosis factor-alpha production, and increased gene expression of induced nitric oxide synthase and adhesion molecules. EVs induce neither NETosis in human neutrophils nor cytokine secretion by peripheral mononuclear cells. However, prior inoculation of A. fumigatus EVs in Galleria mellonella larvae resulted in increased survival after the fungal challenge. Taken together, these findings show that A. fumigatus EVs play a role in protection against fungal infection, although they induce a partial pro-inflammatory response.
ABSTRACT
Members of the Candida haemulonii species complex are multidrug-resistant emergent yeast pathogens able to cause superficial and invasive infections in risk populations. Fungal extracellular vesicles (EVs) play a critical role in the pathogenicity and virulence of several species and may perform essential functions during infections, such as carrying virulence factors that behave in two-way communications with the host, affecting survival and fungal resistance. Our study aimed to describe EV production from Candida haemulonii var. vulnera and evaluate whether murine macrophage RAW 264.7 cells respond to their stimuli by generating an oxidative response after 24 h. For this purpose, reactive oxygen species detection assays demonstrated that high concentrations of yeast and EVs (1010 particles/mL) of Candida haemulonii did not change macrophage viability. However, the macrophages recognized these EVs and triggered an oxidative response through the classical NOX-2 pathway, increasing O2â¢- and H2O2 levels. However, this stress did not cause lipid peroxidation in the RAW 264.7 cells and neither lead to the activation of the COX-2-PGE2 pathway. Thus, our data suggest that low concentrations of C. haemulonii EVs are not recognized by the classical pathway of the oxidative burst generated by macrophages, which might be an advantage allowing the transport of virulence factors via EVs, not identified by the host immune system that could work as fine tube regulators during infections caused by C. haemulonii. In contrast, C. haemulonii var. vulnera and high EV concentrations activated microbicidal actions in macrophages. Therefore, we propose that EVs could participate in the virulence of the species and that these particles could be a source of antigens to be exploited as new therapeutic targets.