Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Blood ; 140(17): 1891-1906, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35544598

ABSTRACT

Relapse and refractory T-cell acute lymphoblastic leukemia (T-ALL) has a poor prognosis, and new combination therapies are sorely needed. Here, we used an ex vivo high-throughput screening platform to identify drug combinations that kill zebrafish T-ALL and then validated top drug combinations for preclinical efficacy in human disease. This work uncovered potent drug synergies between AKT/mTORC1 (mammalian target of rapamycin complex 1) inhibitors and the general tyrosine kinase inhibitor dasatinib. Importantly, these same drug combinations effectively killed a subset of relapse and dexamethasone-resistant zebrafish T-ALL. Clinical trials are currently underway using the combination of mTORC1 inhibitor temsirolimus and dasatinib in other pediatric cancer indications, leading us to prioritize this therapy for preclinical testing. This combination effectively curbed T-ALL growth in human cell lines and primary human T-ALL and was well tolerated and effective in suppressing leukemia growth in patient-derived xenografts (PDX) grown in mice. Mechanistically, dasatinib inhibited phosphorylation and activation of the lymphocyte-specific protein tyrosine kinase (LCK) to blunt the T-cell receptor (TCR) signaling pathway, and when complexed with mTORC1 inhibition, induced potent T-ALL cell killing through reducing MCL-1 protein expression. In total, our work uncovered unexpected roles for the LCK kinase and its regulation of downstream TCR signaling in suppressing apoptosis and driving continued leukemia growth. Analysis of a wide array of primary human T-ALLs and PDXs grown in mice suggest that combination of temsirolimus and dasatinib treatment will be efficacious for a large fraction of human T-ALLs.


Subject(s)
Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Mice , Animals , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Dasatinib/pharmacology , Dasatinib/therapeutic use , Zebrafish/metabolism , Tyrosine , Cell Line, Tumor , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mechanistic Target of Rapamycin Complex 1/metabolism , Receptors, Antigen, T-Cell/therapeutic use , T-Lymphocytes/metabolism , Recurrence , Mammals/metabolism
2.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34415995

ABSTRACT

T cell immunotherapies have revolutionized treatment for a subset of cancers. Yet, a major hurdle has been the lack of facile and predicative preclinical animal models that permit dynamic visualization of T cell immune responses at single-cell resolution in vivo. Here, optically clear immunocompromised zebrafish were engrafted with fluorescent-labeled human cancers along with chimeric antigen receptor T (CAR T) cells, bispecific T cell engagers (BiTEs), and antibody peptide epitope conjugates (APECs), allowing real-time single-cell visualization of T cell-based immunotherapies in vivo. This work uncovered important differences in the kinetics of T cell infiltration, tumor cell engagement, and killing between these immunotherapies and established early endpoint analysis to predict therapy responses. We also established EGFR-targeted immunotherapies as a powerful approach to kill rhabdomyosarcoma muscle cancers, providing strong preclinical rationale for assessing a wider array of T cell immunotherapies in this disease.


Subject(s)
Immunotherapy/methods , Rhabdomyosarcoma/therapy , Single-Cell Analysis/methods , Xenograft Model Antitumor Assays/methods , Zebrafish/genetics , Adolescent , Adult , Animals , Animals, Genetically Modified , Child , Child, Preschool , DNA-Binding Proteins/genetics , ErbB Receptors/immunology , Female , Humans , Immunotherapy, Adoptive , Interleukin Receptor Common gamma Subunit/genetics , Male , Mice, Inbred Strains , Phthalazines/pharmacology , Piperazines/pharmacology , Rhabdomyosarcoma/pathology , T-Lymphocytes/immunology , Temozolomide/pharmacology , Tumor Cells, Cultured , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL