Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Physiol ; 601(9): 1611-1623, 2023 05.
Article in English | MEDLINE | ID: mdl-36762618

ABSTRACT

Synthesis of DNA fragments based on gene sequences that are available in public resources has become an efficient and affordable method that has gradually replaced traditional cloning efforts such as PCR cloning from cDNA. However, database entries based on genome sequencing results are prone to errors which can lead to false sequence information and, ultimately, errors in functional characterisation of proteins such as ion channels and transporters in heterologous expression systems. We have identified five common problems that repeatedly appear in public resources: (1) Not every gene has yet been annotated; (2) not all gene annotations are necessarily correct; (3) transcripts may contain automated corrections; (4) there are mismatches between gene, mRNA and protein sequences; and (5) splicing patterns often lack experimental validation. This technical review highlights and provides a strategy to bypass these issues in order to avoid critical mistakes that could impact future studies of any gene/protein of interest in heterologous expression systems.


Subject(s)
Proteins , Base Sequence , Amino Acid Sequence , DNA, Complementary/genetics , DNA, Complementary/metabolism , Proteins/genetics
2.
Pflugers Arch ; 475(2): 167-179, 2023 02.
Article in English | MEDLINE | ID: mdl-36205782

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel and the epithelial Na+ channel (ENaC) play essential roles in transepithelial ion and fluid transport in numerous epithelial tissues. Inhibitors of both channels have been important tools for defining their physiological role in vitro. However, two commonly used CFTR inhibitors, CFTRinh-172 and GlyH-101, also inhibit non-CFTR anion channels, indicating they are not CFTR specific. However, the potential off-target effects of these inhibitors on epithelial cation channels has to date not been addressed. Here, we show that both CFTR blockers, at concentrations routinely employed by many researchers, caused a significant inhibition of store-operated calcium entry (SOCE) that was time-dependent, poorly reversible and independent of CFTR. Patch clamp experiments showed that both CFTRinh-172 and GlyH-101 caused a significant block of Orai1-mediated whole cell currents, establishing that they likely reduce SOCE via modulation of this Ca2+ release-activated Ca2+ (CRAC) channel. In addition to off-target effects on calcium channels, both inhibitors significantly reduced human αßγ-ENaC-mediated currents after heterologous expression in Xenopus oocytes, but had differential effects on δßγ-ENaC function. Molecular docking identified two putative binding sites in the extracellular domain of ENaC for both CFTR blockers. Together, our results indicate that caution is needed when using these two CFTR inhibitors to dissect the role of CFTR, and potentially ENaC, in physiological processes.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Epithelial Sodium Channels , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Molecular Docking Simulation , Cations/metabolism
3.
Mol Biol Evol ; 38(12): 5704-5725, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34491346

ABSTRACT

The epithelial sodium channel (ENaC) plays a key role in salt and water homeostasis in tetrapod vertebrates. There are four ENaC subunits (α, ß, γ, δ), forming heterotrimeric αßγ- or δßγ-ENaCs. Although the physiology of αßγ-ENaC is well understood, for decades the field has stalled with respect to δßγ-ENaC due to the lack of mammalian model organisms. The SCNN1D gene coding for δ-ENaC was previously believed to be absent in rodents, hindering studies using standard laboratory animals. We analyzed all currently available rodent genomes and discovered that SCNN1D is present in rodents but was independently lost in five rodent lineages, including the Muridae (mice and rats). The independent loss of SCNN1D in rodent lineages may be constrained by phylogeny and taxon-specific adaptation to dry habitats, however habitat aridity does not provide a selection pressure for maintenance of SCNN1D across Rodentia. A fusion of two exons coding for a structurally flexible region in the extracellular domain of δ-ENaC appeared in the Hystricognathi (a group that includes guinea pigs). This conserved pattern evolved at least 41 Ma and represents a new autapomorphic feature for this clade. Exon fusion does not impair functionality of guinea pig (Cavia porcellus) δßγ-ENaC expressed in Xenopus oocytes. Electrophysiological characterization at the whole-cell and single-channel level revealed conserved biophysical features and mechanisms controlling guinea pig αßγ- and δßγ-ENaC function as compared with human orthologs. Guinea pigs therefore represent commercially available mammalian model animals that will help shed light on the physiological function of δ-ENaC.


Subject(s)
Epithelial Sodium Channels , Rodentia , Animals , Epithelial Sodium Channels/genetics , Exons , Guinea Pigs , Mice , Oocytes , Protein Isoforms , Rats , Rodentia/genetics , Xenopus laevis/genetics
4.
Proc Natl Acad Sci U S A ; 116(32): 16003-16011, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31337682

ABSTRACT

Plant sap-feeding insects are widespread, having evolved to occupy diverse environmental niches despite exclusive feeding on an impoverished diet lacking in essential amino acids and vitamins. Success depends exquisitely on their symbiotic relationships with microbial symbionts housed within specialized eukaryotic bacteriocyte cells. Each bacteriocyte is packed with symbionts that are individually surrounded by a host-derived symbiosomal membrane representing the absolute host-symbiont interface. The symbiosomal membrane must be a dynamic and selectively permeable structure to enable bidirectional and differential movement of essential nutrients, metabolites, and biosynthetic intermediates, vital for growth and survival of host and symbiont. However, despite this crucial role, the molecular basis of membrane transport across the symbiosomal membrane remains unresolved in all bacteriocyte-containing insects. A transport protein was immunolocalized to the symbiosomal membrane separating the pea aphid Acyrthosiphon pisum from its intracellular symbiont Buchnera aphidicola The transporter, A. pisum nonessential amino acid transporter 1, or ApNEAAT1 (gene: ACYPI008971), was characterized functionally following heterologous expression in Xenopus oocytes, and mediates both inward and outward transport of small dipolar amino acids (serine, proline, cysteine, alanine, glycine). Electroneutral ApNEAAT1 transport is driven by amino acid concentration gradients and is not coupled to transmembrane ion gradients. Previous metabolite profiling of hemolymph and bacteriocyte, alongside metabolic pathway analysis in host and symbiont, enable prediction of a physiological role for ApNEAAT1 in bidirectional host-symbiont amino acid transfer, supplying both host and symbiont with indispensable nutrients and biosynthetic precursors to facilitate metabolic complementarity.


Subject(s)
Amino Acids/metabolism , Aphids/metabolism , Buchnera/metabolism , Symbiosis , Amino Acid Sequence , Animals , Insect Proteins/metabolism , Models, Biological , Phylogeny
5.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L288-L300, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33296276

ABSTRACT

Cystic fibrosis (CF) arises from mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in progressive and life-limiting respiratory disease. R751L is a rare CFTR mutation that is poorly characterized. Our aims were to describe the clinical and molecular phenotypes associated with R751L. Relevant clinical data were collected from three heterozygote individuals harboring R751L (2 patients with G551D/R751L and 1 with F508del/R751L). Assessment of R751L-CFTR function was made in primary human bronchial epithelial cultures (HBEs) and Xenopus oocytes. Molecular properties of R751L-CFTR were investigated in the presence of known CFTR modulators. Although sweat chloride was elevated in all three patients, the clinical phenotype associated with R751L was mild. Chloride secretion in F508del/R751L HBEs was reduced compared with non-CF HBEs and associated with a reduction in sodium absorption by the epithelial sodium channel (ENaC). However, R751L-CFTR function in Xenopus oocytes, together with folding and cell surface transport of R751L-CFTR, was not different from wild-type CFTR. Overall, R751L-CFTR was associated with reduced sodium chloride absorption but had functional properties similar to wild-type CFTR. This is the first report of R751L-CFTR that combines clinical phenotype with characterization of functional and biological properties of the mutant channel. Our work will build upon existing knowledge of mutations within this region of CFTR and, importantly, inform approaches for clinical management. Elevated sweat chloride and reduced chloride secretion in HBEs may be due to alternative non-CFTR factors, which require further investigation.


Subject(s)
Bronchi , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Epithelial Cells , Mutation, Missense , Sodium Chloride/metabolism , Amino Acid Substitution , Animals , Bronchi/metabolism , Bronchi/pathology , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Humans , Male , Xenopus laevis
6.
FASEB J ; 34(1): 316-332, 2020 01.
Article in English | MEDLINE | ID: mdl-31914675

ABSTRACT

For protection from inhaled pathogens many strategies have evolved in the airways such as mucociliary clearance and cough. We have previously shown that protective respiratory reflexes to locally released bacterial bitter "taste" substances are most probably initiated by tracheal brush cells (BC). Our single-cell RNA-seq analysis of murine BC revealed high expression levels of cholinergic and bitter taste signaling transcripts (Tas2r108, Gnat3, Trpm5). We directly demonstrate the secretion of acetylcholine (ACh) from BC upon stimulation with the Tas2R agonist denatonium. Inhibition of the taste transduction cascade abolished the increase in [Ca2+]i in BC and subsequent ACh-release. ACh-release is regulated in an autocrine manner. While the muscarinic ACh-receptors M3R and M1R are activating, M2R is inhibitory. Paracrine effects of ACh released in response to denatonium included increased [Ca2+]i in ciliated cells. Stimulation by denatonium or with Pseudomonas quinolone signaling molecules led to an increase in mucociliary clearance in explanted tracheae that was Trpm5- and M3R-mediated. We show that ACh-release from BC via the bitter taste cascade leads to immediate paracrine protective responses that can be boosted in an autocrine manner. This mechanism represents the initial step for the activation of innate immune responses against pathogens in the airways.


Subject(s)
Acetylcholine/metabolism , Autocrine Communication , Calcium/metabolism , Flavoring Agents/pharmacology , Paracrine Communication , Taste/physiology , Trachea/metabolism , Animals , Chemoreceptor Cells/drug effects , Chemoreceptor Cells/metabolism , Choline O-Acetyltransferase/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Muscarinic/physiology , Signal Transduction , Single-Cell Analysis , TRPM Cation Channels/physiology , Taste/drug effects , Trachea/drug effects , Transcriptome
7.
J Biol Chem ; 294(33): 12507-12520, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31248986

ABSTRACT

The limited sodium availability of freshwater and terrestrial environments was a major physiological challenge during vertebrate evolution. The epithelial sodium channel (ENaC) is present in the apical membrane of sodium-absorbing vertebrate epithelia and evolved as part of a machinery for efficient sodium conservation. ENaC belongs to the degenerin/ENaC protein family and is the only member that opens without an external stimulus. We hypothesized that ENaC evolved from a proton-activated sodium channel present in ionocytes of freshwater vertebrates and therefore investigated whether such ancestral traits are present in ENaC isoforms of the aquatic pipid frog Xenopus laevis Using whole-cell and single-channel electrophysiology of Xenopus oocytes expressing ENaC isoforms assembled from αßγ- or δßγ-subunit combinations, we demonstrate that Xenopus δßγ-ENaC is profoundly activated by extracellular acidification within biologically relevant ranges (pH 8.0-6.0). This effect was not observed in Xenopus αßγ-ENaC or human ENaC orthologs. We show that protons interfere with allosteric ENaC inhibition by extracellular sodium ions, thereby increasing the probability of channel opening. Using homology modeling of ENaC structure and site-directed mutagenesis, we identified a cleft region within the extracellular loop of the δ-subunit that contains several acidic amino acid residues that confer proton-sensitivity and enable allosteric inhibition by extracellular sodium ions. We propose that Xenopus δßγ-ENaC can serve as a model for investigating ENaC transformation from a proton-activated toward a constitutively-active ion channel. Such transformation might have occurred during the evolution of tetrapod vertebrates to enable bulk sodium absorption during the water-to-land transition.


Subject(s)
Epithelial Sodium Channels/metabolism , Sodium/metabolism , Xenopus Proteins/metabolism , Allosteric Regulation , Animals , Epithelial Sodium Channels/genetics , Humans , Hydrogen-Ion Concentration , Mutagenesis, Site-Directed , Protein Isoforms/genetics , Protein Isoforms/metabolism , Xenopus Proteins/genetics , Xenopus laevis
8.
Am J Physiol Regul Integr Comp Physiol ; 319(4): R387-R400, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32783689

ABSTRACT

The conquest of freshwater and terrestrial habitats was a key event during vertebrate evolution. Occupation of low-salinity and dry environments required significant osmoregulatory adaptations enabling stable ion and water homeostasis. Sodium is one of the most important ions within the extracellular liquid of vertebrates, and molecular machinery for urinary reabsorption of this electrolyte is critical for the maintenance of body osmoregulation. Key ion channels involved in the fine-tuning of sodium homeostasis in tetrapod vertebrates are epithelial sodium channels (ENaCs), which allow the selective influx of sodium ions across the apical membrane of epithelial cells lining the distal nephron or the colon. Furthermore, ENaC-mediated sodium absorption across tetrapod lung epithelia is crucial for the control of liquid volumes lining the pulmonary surfaces. ENaCs are vertebrate-specific members of the degenerin/ENaC family of cation channels; however, there is limited knowledge on the evolution of ENaC within this ion channel family. This review outlines current concepts and hypotheses on ENaC phylogeny and discusses the emergence of regulation-defining sequence motifs in the context of osmoregulatory adaptations during tetrapod terrestrialization. In light of the distinct regulation and expression of ENaC isoforms in tetrapod vertebrates, we discuss the potential significance of ENaC orthologs in osmoregulation of fishes as well as the putative fates of atypical channel isoforms in mammals. We hypothesize that ancestral proton-sensitive ENaC orthologs might have aided the osmoregulatory adaptation to freshwater environments whereas channel regulation by proteases evolved as a molecular adaptation to lung liquid homeostasis in terrestrial tetrapods.


Subject(s)
Biological Evolution , Epithelial Sodium Channels/metabolism , Evolution, Molecular , Osmoregulation/physiology , Animals , Humans
9.
J Biol Chem ; 293(18): 6647-6658, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29576549

ABSTRACT

The epithelial sodium channel (ENaC) is a critical regulator of vertebrate electrolyte homeostasis. ENaC is the only constitutively open ion channel in the degenerin/ENaC protein family, and its expression, membrane abundance, and open probability therefore are tightly controlled. The canonical ENaC is composed of three subunits (α, ß, and γ), but a fourth δ-subunit may replace α and form atypical δßγ-ENaCs. Using Xenopus laevis as a model, here we found that mRNAs of the α- and δ-subunits are differentially expressed in different tissues and that δ-ENaC predominantly is present in the urogenital tract. Using whole-cell and single-channel electrophysiology of oocytes expressing Xenopus αßγ- or δßγ-ENaC, we demonstrate that the presence of the δ-subunit enhances the amount of current generated by ENaC due to an increased open probability, but also changes current into a transient form. Activity of canonical ENaCs is critically dependent on proteolytic processing of the α- and γ-subunits, and immunoblotting with epitope-tagged ENaC subunits indicated that, unlike α-ENaC, the δ-subunit does not undergo proteolytic maturation by the endogenous protease furin. Furthermore, currents generated by δßγ-ENaC were insensitive to activation by extracellular chymotrypsin, and presence of the δ-subunit prevented cleavage of γ-ENaC at the cell surface. Our findings suggest that subunit composition constitutes an additional level of ENaC regulation, and we propose that the Xenopus δ-ENaC subunit represents a functional example that demonstrates the importance of proteolytic maturation during ENaC evolution.


Subject(s)
Epithelial Sodium Channels/metabolism , Peptide Hydrolases/metabolism , Animals , Cell Membrane/metabolism , Chymotrypsin/metabolism , Epithelial Sodium Channels/chemistry , Epithelial Sodium Channels/genetics , Furin/metabolism , Oocytes/metabolism , Oocytes/physiology , Patch-Clamp Techniques , Proteolysis , RNA, Messenger/genetics , Signal Transduction , Urogenital System/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL