Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Infect Immun ; 90(5): e0005922, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35416705

ABSTRACT

The Borrelia burgdorferi BB0323 protein undergoes a complex yet poorly defined proteolytic maturation event that generates N-terminal and C-terminal proteins with essential functions in cell growth and infection. Here, we report that a borrelial protease, B. burgdorferi high temperature requirement A protease (BbHtrA), cleaves BB0323 between asparagine (N) and leucine (L) at positions 236 and 237, while the replacement of these residues with alanine in the mutant protein prevents its cleavage, despite preserving its normal secondary structure. The N-terminal BB0323 protein binds BbHtrA, but its cleavage site mutant displays deficiency in such interaction. An isogenic borrelial mutant with NL-to-AA substitution in BB0323 (referred to as Bbbb0323NL) maintains normal growth yet is impaired for infection of mice or transmission from infected ticks. Notably, the BB0323 protein is still processed in Bbbb0323NL, albeit with lower levels of mature N-terminal BB0323 protein and multiple aberrantly processed polypeptides, which could result from nonspecific cleavages at other asparagine and leucine residues in the protein. The lack of infectivity of Bbbb0323NL is likely due to the impaired abundance or stoichiometry of a protein complex involving BB0238, another spirochete protein. Together, these studies highlight that a precise proteolytic event and a particular protein-protein interaction, involving multiple borrelial virulence determinants, are mutually inclusive and interconnected, playing essential roles in the infectivity of Lyme disease pathogens.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Animals , Asparagine/metabolism , Bacterial Proteins/metabolism , Leucine/metabolism , Lyme Disease/metabolism , Mice , Peptide Hydrolases/metabolism , Proteolysis , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
2.
Cell Microbiol ; 20(9): e12855, 2018 09.
Article in English | MEDLINE | ID: mdl-29749010

ABSTRACT

One of the Borrelia burgdorferi virulence determinants, annotated as Lmp1, is a surface-exposed, conserved, and potential multi-domain protein involved in various functions in spirochete infectivity. Lmp1 contributes to host-pathogen interactions and evasion of host adaptive immunity by spirochetes. Here, we show that in diverse B. burgdorferi species, Lmp1 exists as distinct, region-specific, and lower molecular mass polypeptides encompassing 1 or more domains, including independent N-terminal and middle regions and a combined middle and C-terminal region. These polypeptides originate from complex posttranslational maturation events, partly supported by a periplasmic serine protease termed as BbHtrA. Although spirochete persistence in mice is independently supported by domain-specific Lmp1 polypeptides, transmission of B. burgdorferi from ticks to mammals requires essential contributions from both N-terminal and middle regions. Interference with the functions of Lmp1 domains or their complex posttranslational maturation events may aid in development of novel therapeutic strategies to combat infection and transmission of pathogens.


Subject(s)
Bacterial Proteins/metabolism , Borrelia burgdorferi/physiology , Membrane Proteins/metabolism , Microbial Viability , Protein Processing, Post-Translational , Serine Proteases/metabolism , Virulence Factors/metabolism , Animals , Mice , Proteolysis , Ticks
3.
Nucleic Acids Res ; 44(13): 6232-41, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27141962

ABSTRACT

Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain a canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.


Subject(s)
DNA/chemistry , Peptides/chemistry , Proliferating Cell Nuclear Antigen/chemistry , Protein Conformation , Crystallography, X-Ray , DNA/metabolism , Nucleic Acid Conformation , Peptides/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Protein Binding , Protein Domains , Thermococcus/chemistry , Thermococcus/metabolism
4.
Mol Cell ; 34(6): 674-85, 2009 Jun 26.
Article in English | MEDLINE | ID: mdl-19560420

ABSTRACT

The activity of RING finger ubiquitin ligases (E3) is dependent on their ability to facilitate transfer of ubiquitin from ubiquitin-conjugating enzymes (E2) to substrates. The G2BR domain within the E3 gp78 binds selectively and with high affinity to the E2 Ube2g2. Through structural and functional analyses, we determine that this occurs on a region of Ube2g2 distinct from binding sites for ubiquitin-activating enzyme (E1) and RING fingers. Binding to the G2BR results in conformational changes in Ube2g2 that affect ubiquitin loading. The Ube2g2:G2BR interaction also causes an approximately 50-fold increase in affinity between the E2 and RING finger. This results in markedly increased ubiquitylation by Ube2g2 and the gp78 RING finger. The significance of this G2BR effect is underscored by enhanced ubiquitylation observed when Ube2g2 is paired with other RING finger E3s. These findings uncover a mechanism whereby allosteric effects on an E2 enhance E2-RING finger interactions and, consequently, ubiquitylation.


Subject(s)
Receptors, Cytokine/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Tertiary , RING Finger Domains , Receptors, Autocrine Motility Factor , Receptors, Cytokine/metabolism , Receptors, Cytokine/physiology , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/physiology , Ubiquitination
5.
Nucleic Acids Res ; 39(17): 7803-15, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21652641

ABSTRACT

Processive transcription antitermination requires the assembly of the complete antitermination complex, which is initiated by the formation of the ternary NusB-NusE-BoxA RNA complex. We have elucidated the crystal structure of this complex, demonstrating that the BoxA RNA is composed of 8 nt that are recognized by the NusB-NusE heterodimer. Functional biologic and biophysical data support the structural observations and establish the relative significance of key protein-protein and protein-RNA interactions. Further crystallographic investigation of a NusB-NusE-dsRNA complex reveals a heretofore unobserved dsRNA binding site contiguous with the BoxA binding site. We propose that the observed dsRNA represents BoxB RNA, as both single-stranded BoxA and double-stranded BoxB components are present in the classical lambda antitermination site. Combining these data with known interactions amongst antitermination factors suggests a specific model for the assembly of the complete antitermination complex.


Subject(s)
Bacterial Proteins/chemistry , Escherichia coli Proteins/chemistry , RNA-Binding Proteins/chemistry , RNA/chemistry , Ribosomal Proteins/chemistry , Transcription Factors/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Binding Sites , Escherichia coli Proteins/genetics , Genetic Complementation Test , Models, Molecular , Molecular Sequence Data , Mutation , Phenotype , Protein Multimerization , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/genetics , Ribosomal Proteins/genetics , Transcription Factors/genetics , Transcription, Genetic
7.
mBio ; 14(5): e0213523, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37830812

ABSTRACT

IMPORTANCE: Lyme disease is a major tick-borne infection caused by a bacterial pathogen called Borrelia burgdorferi, which is transmitted by ticks and affects hundreds of thousands of people every year. These bacterial pathogens are distinct from other genera of microbes because of their distinct features and ability to transmit a multi-system infection to a range of vertebrates, including humans. Progress in understanding the infection biology of Lyme disease, and thus advancements towards its prevention, are hindered by an incomplete understanding of the microbiology of B. burgdorferi, partly due to the occurrence of many unique borrelial proteins that are structurally unrelated to proteins of known functions yet are indispensable for pathogen survival. We herein report the use of diverse technologies to examine the structure and function of a unique B. burgdorferi protein, annotated as BB0238-an essential virulence determinant. We show that the protein is structurally organized into two distinct domains, is involved in multiplex protein-protein interactions, and facilitates tick-to-mouse pathogen transmission by aiding microbial evasion of early host cellular immunity. We believe that our findings will further enrich our understanding of the microbiology of B. burgdorferi, potentially impacting the future development of novel prevention strategies against a widespread tick-transmitted infection.


Subject(s)
Borrelia burgdorferi , Borrelia , Ixodes , Lyme Disease , Ticks , Animals , Humans , Mice , Immune Evasion , Lyme Disease/microbiology , Borrelia burgdorferi/metabolism , Ticks/microbiology , Ixodes/microbiology
8.
Front Mol Biosci ; 5: 87, 2018.
Article in English | MEDLINE | ID: mdl-30406112

ABSTRACT

Chromosomal DNA replication is achieved by an assembly of multi-protein complexes at the replication fork. DNA sliding clamps play an important role in this assembly and are essential for cell viability. Inhibitors of bacterial (ß-clamp) and eukaryal DNA clamps, proliferating cell nuclear antigen (PCNA), have been explored for use as antibacterial and anti-cancer drugs, respectively. Inhibitors for bacterial ß-clamps include modified peptides, small molecule inhibitors, natural products, and modified non-steroidal anti-inflammatory drugs. Targeting eukaryotic PCNA sliding clamp in its role in replication can be complicated by undesired effects on healthy cells. Some success has been seen in the design of peptide inhibitors, however, other research has focused on targeting PCNA molecules that are modified in diseased states. These inhibitors that are targeted to PCNA involved in DNA repair can sensitize cancer cells to existing anti-cancer therapeutics, and a DNA aptamer has also been shown to inhibit PCNA. In this review, studies in the use of both bacterial and eukaryotic sliding clamps as therapeutic targets are summarized.

9.
Curr Opin Struct Biol ; 14(5): 547-53, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15465314

ABSTRACT

The automation of protein structure determination using NMR is coming of age. The tedious processes of resonance assignment, followed by assignment of NOE (nuclear Overhauser enhancement) interactions (now intertwined with structure calculation), assembly of input files for structure calculation, intermediate analyses of incorrect assignments and bad input data, and finally structure validation are all being automated with sophisticated software tools. The robustness of the different approaches continues to deal with problems of completeness and uniqueness; nevertheless, the future is very bright for automation of NMR structure generation to approach the levels found in X-ray crystallography. Currently, near completely automated structure determination is possible for small proteins, and the prospect for medium-sized and large proteins is good.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Automation , Crystallography, X-Ray
10.
Nat Commun ; 3: 901, 2012 Jun 12.
Article in English | MEDLINE | ID: mdl-22692544

ABSTRACT

Genome packaging is an essential housekeeping process in virtually all organisms for proper storage and maintenance of genetic information. Although the extent and mechanisms of packaging vary, the process involves the formation of nucleic-acid superstructures. Crystal structures of DNA coiled coils indicate that their geometries can vary according to sequence and/or the presence of stabilizers such as proteins or small molecules. However, such superstructures have not been revealed for RNA. Here we report the crystal structure of an RNA supercoil, which displays one level higher molecular organization than previously reported structures of DNA coiled coils. In the presence of an RNA-binding protein, two interlocking RNA coiled coils of double-stranded RNA, a 'coil of coiled coils', form a plectonemic supercoil. Molecular dynamics simulations suggest that protein-RNA interaction is required for the stability of the supercoiled RNA. This study provides structural insight into higher order packaging mechanisms of nucleic acids.


Subject(s)
RNA/chemistry , Crystallography, X-Ray , Mass Spectrometry , Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA-Binding Proteins , Structure-Activity Relationship
11.
J Mol Biol ; 376(3): 705-20, 2008 Feb 22.
Article in English | MEDLINE | ID: mdl-18177898

ABSTRACT

In prokaryotic transcription regulation, several host factors form a complex with RNA polymerase and the nascent mRNA. As part of a process known as antitermination, two of these host factors, NusB and NusE, bind to form a heterodimer, which interacts with a specific boxA site on the RNA. The NusB/NusE/boxA RNA ternary complex interacts with the RNA polymerase transcription complex, stabilizing it and allowing transcription past premature termination points. The NusB protein also binds boxA RNA individually and retains all specificity for boxA. However, NusE increases the affinity of RNA to NusB in the ternary complex, which contributes to efficient antitermination. To understand the molecular mechanism of the process, we have determined the structure of NusB from the thermophilic bacterium Aquifex aeolicus and studied the interaction of NusB and NusE. We characterize this binding interaction using NMR, isothermal titration calorimetry, gel filtration, and analytical ultracentrifugation. The binding site of NusE on NusB was determined using NMR chemical shift perturbation studies. We have also determined the NusE binding site in the ternary Escherichia coli NusB/NusE/boxA RNA complex and show that it is very similar to that in the NusB/NusE complex. There is one loop of residues (from 113 to 118 in NusB) affected by NusE binding in the ternary complex but not in the binary complex. This difference may be correlated to an increase in binding affinity of RNA for the NusB/NusE complex.


Subject(s)
Bacterial Proteins/metabolism , RNA-Binding Proteins/metabolism , Bacterial Proteins/chemistry , Escherichia coli Proteins/metabolism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , RNA-Binding Proteins/chemistry , Ribosomal Proteins/metabolism , Structural Homology, Protein , Terminator Regions, Genetic , Transcription Factors/metabolism , Transcription, Genetic
12.
Biochemistry ; 46(49): 13975-82, 2007 Dec 11.
Article in English | MEDLINE | ID: mdl-18001134

ABSTRACT

The high-resolution solution structure of Yersinia modulating protein YmoA is presented. The protein is all helical with the first three of four helices forming the central core. Structures calculated with only NOE and dihedral restraints exhibit a backbone root-mean-square deviation (rmsd) of 0.77 A. Upon refinement against Halpha-Calpha, HN-N, and Calpha-C' J-modulated residual dipolar couplings, the backbone rmsd improves to 0.22 A. YmoA has a high amino acid sequence identity to and a similar overall fold to Escherichia coli hemolysin expression modulating protein Hha; however, structural differences do occur. YmoA is also found to be structurally similar to the histone-like nucleoid structuring protein H-NS, indicating that YmoA may intercalate into higher-order H-NS suprastructuring by substituting for an H-NS dimer.


Subject(s)
Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , Amino Acid Sequence , Escherichia coli Proteins/chemistry , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Sequence Alignment , Yersinia enterocolitica/chemistry
13.
J Biomol NMR ; 24(2): 143-8, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12495030

ABSTRACT

We demonstrate a novel methodology to disrupt the symmetry in the NMR spectra of homodimers. A paramagnetic probe is introduced sub-stoichiometrically to create an asymmetric system with the paramagnetic probe residing on only one monomer within the dimer. This creates sufficient magnetic anisotropy for resolution of symmetry-related overlapped resonances and, consequently, detection of pseudocontact shifts and residual dipolar couplings specific to each monomeric component. These pseudocontact shifts can be readily incorporated into existing structure refinement calculations and enable determination of monomer orientation within the dimeric protein. This methodology can be widely used for solution structure determination of symmetric dimers.


Subject(s)
Proteins/chemistry , DNA-Binding Proteins/chemistry , Dimerization , Edetic Acid/chemistry , Macromolecular Substances , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Structure, Quaternary , Protein Structure, Tertiary , STAT4 Transcription Factor , Trans-Activators/chemistry
14.
J Biomol NMR ; 28(3): 205-12, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14752254

ABSTRACT

We demonstrate improved accuracy in protein structure determination for large (>/=30 kDa), deuterated proteins (e.g. STAT4(NT)) via the combination of pseudocontact shifts for amide and methyl protons with the available NOEs in methyl-protonated proteins. The improved accuracy is cross validated by Q-factors determined from residual dipolar couplings measured as a result of magnetic susceptibility alignment. The paramagnet is introduced via binding to thiol-reactive EDTA, and multiple sites can be serially engineered to obtain data from alternative orientations of the paramagnetic anisotropic susceptibility tensor. The technique is advantageous for systems where the target protein has strong interactions with known alignment media.


Subject(s)
Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Animals , DNA-Binding Proteins/chemistry , Peptides/chemistry , Reproducibility of Results , STAT4 Transcription Factor , Trans-Activators/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL