Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Publication year range
1.
Article in English | MEDLINE | ID: mdl-37206625

ABSTRACT

Boron neutron capture therapy (BNCT) is a cellular-level hadron therapy achieving therapeutic effects via the synergistic action of multiple particles, including Lithium, alpha, proton, and photon. However, evaluating the relative biological effectiveness (RBE) in BNCT remains challenging. In this research, we performed a microdosimetric calculation for BNCT using the Monte Carlo track structure (MCTS) simulation toolkit, TOPAS-nBio. This paper reports the first attempt to derive the ionization cross-sections of low-energy (>0.025 MeV/u) Lithium for MCTS simulation based on the effective charge cross-section scalation method and phenomenological double-parameter modification. The fitting parameters λ1=1.101,λ2=3.486 were determined to reproduce the range and stopping power data from the ICRU report 73. Besides, the lineal energy spectra of charged particles in BNCT were calculated, and the influence of sensitive volume (SV) size was discussed. Condensed history simulation obtained similar results with MCTS when using Micron-SV while overestimating the lineal energy when using Nano-SV. Furthermore, we found that the microscopic boron distribution can significantly affect the lineal energy for Lithium, while the effect for alpha is minimal. Similar results to the published data by PHITS simulation were observed for the compound particles and monoenergetic protons when using micron-SV. Spectra with nano-SV reflected that the different track densities and absorbed doses in the nucleus together result in the dramatic difference in the macroscopic biological response of BPA and BSH. This work and the developed methodology could impact the research fields in BNCT where understanding radiation effects is crucial, such as the treatment planning system, source evaluation, and new boron drug development.

2.
Sensors (Basel) ; 22(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35214414

ABSTRACT

Recently, new high-resolution cadmium-zinc-telluride (CZT) drift strip detectors for room temperature gamma-ray spectroscopic imaging were developed by our group. The CZT detectors equipped with orthogonal anode/cathode collecting strips, drift strips and dedicated pulse processing allow a detection area of 6 × 20 mm2 and excellent room temperature spectroscopic performance (0.82% FWHM at 661.7 keV). In this work, we investigated the potentialities of these detectors for prompt gamma-ray spectroscopy (PGS) in boron neutron capture therapy (BNCT). The detectors, exploiting the measurement of the 478 keV prompt gamma rays emitted by 94% 7Li nuclides from the 10B(n, α)7Li reaction, are very appealing for the development of single-photon emission computed tomography (SPECT) systems and Compton cameras in BNCT. High-resolution gamma-ray spectra from 10B samples under thermal neutrons were measured at the T.R.I.G.A. Mark II research nuclear reactor of the University of Pavia (Italy).


Subject(s)
Boron Neutron Capture Therapy , Boron Neutron Capture Therapy/methods , Cadmium , Gamma Rays , Tellurium/chemistry , Zinc
3.
J Synchrotron Radiat ; 27(Pt 6): 1564-1576, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33147181

ABSTRACT

In the last two decades, great efforts have been made in the development of 3D cadmium-zinc-telluride (CZT) detectors operating at room temperature for gamma-ray spectroscopic imaging. This work presents the spectroscopic performance of new high-resolution CZT drift strip detectors, recently developed at IMEM-CNR of Parma (Italy) in collaboration with due2lab (Italy). The detectors (19.4 mm × 19.4 mm × 6 mm) are organized into collecting anode strips (pitch of 1.6 mm) and drift strips (pitch of 0.4 mm) which are negatively biased to optimize electron charge collection. The cathode is divided into strips orthogonal to the anode strips with a pitch of 2 mm. Dedicated pulse processing analysis was performed on a wide range of collected and induced charge pulse shapes using custom 32-channel digital readout electronics. Excellent room-temperature energy resolution (1.3% FWHM at 662 keV) was achieved using the detectors without any spectral corrections. Further improvements (0.8% FWHM at 662 keV) were also obtained through a novel correction technique based on the analysis of collected-induced charge pulses from anode and drift strips. These activities are in the framework of two Italian research projects on the development of spectroscopic gamma-ray imagers (10-1000 keV) for astrophysical and medical applications.

4.
Sensors (Basel) ; 20(11)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466560

ABSTRACT

Neutron test campaigns on silicon (Si) and silicon carbide (SiC) power MOSFETs and IGBTs were conducted at the TRIGA (Training, Research, Isotopes, General Atomics) Mark II (Pavia, Italy) nuclear reactor and ChipIr-ISIS Neutron and Muon Source (Didcot, U.K.) facility. About 2000 power transistors made by STMicroelectronics were tested in all the experiments. Tests with thermal and fast neutrons (up to about 10 MeV) at the TRIGA Mark II reactor showed that single-event burnout (SEB) failures only occurred at voltages close to the rated drain-source voltage. Thermal neutrons did not induce SEB, nor degradation in the electrical parameters of the devices. SEB failures during testing at ChipIr with ultra-fast neutrons (1-800 MeV) were evaluated in terms of failure in time (FIT) versus derating voltage curves according to the JEP151 procedure of the Joint Electron Device Engineering Council (JEDEC). These curves, even if scaled with die size and avalanche voltage, were strongly linked to the technological processes of the devices, although a common trend was observed that highlighted commonalities among the failures of different types of MOSFETs. In both experiments, we observed only SEB failures without single-event gate rupture (SEGR) during the tests. None of the power devices that survived the neutron tests were degraded in their electrical performances. A study of the worst-case bias condition (gate and/or drain) during irradiation was performed.

5.
Bioorg Chem ; 93: 103324, 2019 12.
Article in English | MEDLINE | ID: mdl-31585269

ABSTRACT

Curcumin is currently being investigated for its capacity to treat many types of cancer and to prevent the neuron damage that is observed in Alzheimer's disease (AD). However, its clinical use is limited by its low stability and solubility in aqueous solutions. In this study, we propose a completely new class of boronated monocarbonyl analogues of Curcumin (BMAC, 6a-c), in which a carbonyl group replaces the Curcumin ß-diketone functionality, and an ortho-carborane, an icosahedral boron cluster, substitutes one of the two phenolic rings. BMAC antitumor activity against MCF7 and OVCAR-3 cell lines was assessed in vitro and compared to that of Curcumin and the corresponding MAC derivative. BMAC 6a-c showed efficiencies that are comparable to that of MAC and superior to that of Curcumin in both the cell lines. Moreover, the inhibition of the formation of ß-amyloid aggregates by BMAC 6a-c was evaluated and it was shown that compound 6c, which contains two OH moieties, has a better efficiency than Curcumin. The presence of a second -OH group can enhance the compound's binding efficacy with ß-amyloid aggregates. For the future, the presence of at least one carborane group means that the BMAC antitumor effect can be coupled with Boron Neutron Capture Therapy.


Subject(s)
Amyloid beta-Peptides/drug effects , Antineoplastic Agents/pharmacology , Boron Compounds/chemistry , Boron Compounds/pharmacology , Curcumin/chemistry , Curcumin/pharmacology , Drug Design , Boron Compounds/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans
6.
Radiat Environ Biophys ; 58(2): 237-245, 2019 05.
Article in English | MEDLINE | ID: mdl-30689023

ABSTRACT

Osteosarcoma is the most common primary malignant tumour of bone in young patients. The survival of these patients has largely been improved due to adjuvant and neo-adjuvant chemotherapy in addition to surgery. Boron neutron capture therapy (BNCT) is proposed as a complementary therapy, due to its ability to inactivate tumour cells that may survive the standard treatment and that may be responsible for recurrences and/or metastases. BNCT is based on neutron irradiation of a tumour enriched in 10B with a boron-loaded drug. Low-energy neutron capture in 10B creates charged particles that impart a high dose to tumour cells, which can be calculated only knowing the boron concentration. Charged particle spectrometry is a method that can be used to quantify boron concentration. This method requires acquisition of the energy spectra of charged particles such as alpha particles produced by neutron capture reactions in thin tissue sections irradiated with low-energy neutrons. Boron concentration is then determined knowing the stopping power of the alpha particles in the sample material. This paper describes the adaptation of this method for bone, with emphasis on sample preparation, experimental set-up and stopping power assessment of the involved alpha particles. The knowledge of boron concentration in healthy bones is important, because it allows for any dose limitation that might be necessary to avoid adverse effects such as bone fragility. The measurement process was studied through Monte Carlo simulations and analytical calculations. Finally, the boron content of bone samples was measured by alpha spectrometry at the TRIGA reactor in Pavia, Italy, and compared to that obtained by neutron autoradiography. The agreement between the results obtained with these techniques confirms the suitability of alpha spectrometry to measure boron in bone.


Subject(s)
Boron/analysis , Femur/chemistry , Adult , Alpha Particles , Animals , Humans , Monte Carlo Method , Sheep
7.
Rep Pract Oncol Radiother ; 21(2): 123-8, 2016.
Article in English | MEDLINE | ID: mdl-26933395

ABSTRACT

AIM: Boron Neutron Capture Therapy (BNCT) is a binary hadrontherapy which exploits the neutron capture reaction in boron, together with a selective uptake of boronated substances by the neoplastic tissue. There is increasing evidence that future improvements in clinical BNCT will be triggered by the discovery of new boronated compounds, with higher selectivity for the tumor with respect to clinically used sodium borocaptate (BSH) and boronophenylalanine (BPA). BACKGROUND: Therefore, a (10)B quantification technique for biological samples is needed in order to evaluate the performance of new boronated formulations. MATERIALS AND METHODS: This article describes an improved neutron autoradiography set-up employing radiation sensitive films where the latent tracks are made visible by proper etching conditions. RESULTS: Calibration curves for both liquid and tissue samples were obtained. CONCLUSIONS: The obtained calibration curves were adopted to set-up a mechanism to point out boron concentration in the whole sample.

8.
Acta Oncol ; 54(1): 99-106, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24960584

ABSTRACT

BACKGROUND: We previously demonstrated the therapeutic success of sequential boron neutron capture therapy (Seq-BNCT) in the hamster cheek pouch oral cancer model. It consists of BPA-BNCT followed by GB-10-BNCT 24 or 48 hours later. Additionally, we proved that tumor blood vessel normalization with thalidomide prior to BPA-BNCT improves tumor control. The aim of the present study was to evaluate the therapeutic efficacy and explore potential boron microdistribution changes in Seq-BNCT preceded by tumor blood vessel normalization. MATERIAL AND METHODS: Tumor bearing animals were treated with thalidomide for tumor blood vessel normalization, followed by Seq-BNCT (Th+ Seq-BNCT) or Seq-Beam Only (Th+ Seq-BO) in the window of normalization. Boron microdistribution was assessed by neutron autoradiography. RESULTS: Th+ Seq-BNCT induced overall tumor response of 100%, with 87 (4)% complete tumor response. No cases of severe mucositis in dose-limiting precancerous tissue were observed. Differences in boron homogeneity between tumors pre-treated and not pre-treated with thalidomide were observed. CONCLUSION: Th+ Seq-BNCT achieved, for the first time, response in all treated tumors. Increased homogeneity in tumor boron microdistribution is associated to an improvement in tumor control.


Subject(s)
Boron Compounds/therapeutic use , Boron Neutron Capture Therapy/methods , Mouth Neoplasms/radiotherapy , Neovascularization, Pathologic/drug therapy , Phenylalanine/analogs & derivatives , 9,10-Dimethyl-1,2-benzanthracene , Angiogenesis Inhibitors/therapeutic use , Animals , Boron Compounds/pharmacokinetics , Carcinogens , Cricetinae , Mesocricetus , Mouth Neoplasms/blood supply , Mouth Neoplasms/chemically induced , Mouth Neoplasms/metabolism , Phenylalanine/pharmacokinetics , Phenylalanine/therapeutic use , Precancerous Conditions/blood supply , Precancerous Conditions/chemically induced , Precancerous Conditions/metabolism , Precancerous Conditions/radiotherapy , Thalidomide/therapeutic use
9.
Nanomedicine ; 11(3): 741-50, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25596074

ABSTRACT

This study aims at developing an innovative theranostic approach for lung tumor and metastases treatment, based on Boron Neutron Capture Therapy (BNCT). It relies on to the use of low density lipoproteins (LDL) as carriers able to maximize the selective uptake of boron atoms in tumor cells and, at the same time, to quantify the in vivo boron distribution by magnetic resonance imaging (MRI). Tumor cells uptake was initially assessed by ICP-MS and MRI on four types of tumor (TUBO, B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung metastases were generated by intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) in BALB/c mice and transgenic EML4-ALK mice were used as primary tumor model. After neutron irradiation, tumor growth was followed for 30-40 days by MRI. Tumor masses of boron treated mice increased markedly slowly than the control group. From the clinical editor: In this article, the authors described an improvement to existing boron neutron capture therapy. The dual MRI/BNCT agent, carried by LDLs, was able to maximize the selective uptake of boron in tumor cells, and, at the same time, quantify boron distribution in tumor and in other tissues using MRI. Subsequent in vitro and in vivo experiments showed tumor cell killing after neutron irradiation.


Subject(s)
Boron Neutron Capture Therapy/methods , Boron/pharmacology , Gadolinium/pharmacology , Lung Neoplasms/radiotherapy , Mammary Neoplasms, Experimental/radiotherapy , Animals , Female , Lung Neoplasms/pathology , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Neoplasm Metastasis
10.
Org Biomol Chem ; 12(15): 2457-67, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24604345

ABSTRACT

In this study the synthesis and characterization of a new dual, imaging and therapeutic, agent is proposed with the aim of improving the efficacy of Boron Neutron Capture Therapy (BNCT) in cancer treatment. The agent (Gd-B-AC01) consists of a carborane unit (ten boron atoms) bearing a cholesterol unit on one side (to pursue the incorporation into the liposome bi-layer) and a Gd(iii)/1,4,7,10-tetraazacyclododecane monoamide complex on the other side (as a MRI reporter to attain the quantification of the B/Gd concentration). In order to endow the BNCT agent with specific delivery properties, the liposome embedded with the MRI/BNCT dual probes has been functionalized with a pegylated phospholipid containing a folic acid residue at the end of the PEG chain. The vector allows the binding of the liposome to folate receptors that are overexpressed in many tumor types, and in particular, in human ovarian cancer cells (IGROV-1). An in vitro test on IGROV-1 cells demonstrated that Gd-B-AC01 loaded liposomes are efficient carriers for the delivery of the MRI/BNCT probes to the tumor cells. Finally, the BNCT treatment of IGROV-1 cells showed that the number of surviving cells was markedly smaller when the cells were irradiated after internalization of the folate-targeted GdB10-AC01/liposomes.


Subject(s)
Boranes/chemistry , Boron Neutron Capture Therapy/methods , Cholesterol/therapeutic use , Magnetic Resonance Imaging/methods , Biological Transport , Cell Line, Tumor , Chemistry Techniques, Synthetic , Cholesterol/chemical synthesis , Cholesterol/chemistry , Folic Acid/chemistry , Humans , Liposomes , Polyethylene Glycols/chemistry
11.
Radiat Environ Biophys ; 53(3): 525-33, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24659413

ABSTRACT

This paper presents a biophysical model of radiation-induced cell death, implemented as a Monte Carlo code called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA), based on the assumption that some chromosome aberrations (dicentrics, rings, and large deletions, called ''lethal aberrations'') lead to clonogenic inactivation. In turn, chromosome aberrations are assumed to derive from clustered, and thus severe, DNA lesions (called ''cluster lesions,'' or CL) interacting at the micrometer scale; the CL yield and the threshold distance governing CL interaction are the only model parameters. After a pilot study on V79 hamster cells exposed to protons and carbon ions, in the present work the model was extended and applied to AG1522 human cells exposed to photons, He ions, and heavier ions including carbon and neon. The agreement with experimental survival data taken from the literature supported the assumptions. In particular, the inactivation of AG1522 cells was explained by lethal aberrations not only for X-rays, as already reported by others, but also for the aforementioned radiation types. Furthermore, the results are consistent with the hypothesis that the critical initial lesions leading to cell death are DNA cluster lesions having yields in the order of *2 CL Gy-1 cell-1 at low LET and*20 CL Gy-1 cell-1 at high LET, and that the processing of these lesions is modulated by proximity effects at the micrometer scale related to interphase chromatin organization. The model was then applied to calculate the fraction of inactivated cells, as well as the yields of lethal aberrations and cluster lesions, as a function of LET; the results showed a maximum around 130 keV/lm, and such maximum was much higher for cluster lesions and lethal aberrations than for cell inactivation.


Subject(s)
Models, Biological , Cell Death/radiation effects , Cell Nucleus/radiation effects , Cell Survival/radiation effects , Fibroblasts/cytology , Fibroblasts/radiation effects , Heavy Ions/adverse effects , Helium/adverse effects , Humans , Monte Carlo Method , Photons/adverse effects
12.
Phys Imaging Radiat Oncol ; 29: 100556, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38405430

ABSTRACT

Boron neutron capture therapy exploits 10B(n,α)7Li reactions for targeted tumor destruction. In this work, we aimed at developing a dose monitoring system based on the detection of 478 keV gamma rays emitted by the reactions, which is very challenging due to the severe background present. We investigated a compact gamma-ray detector with a pinhole collimator and shielding housing. Experimental nuclear reactor measurements involved varying boron concentrations and artificial shifts of the sources. The system successfully resolved the 478 keV photopeak and detected 1 cm lateral displacements, confirming its suitability for precise boron dose monitoring.

13.
Eur J Med Chem ; 270: 116334, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38552427

ABSTRACT

Mesothelioma is a malignant neoplasm of mesothelial cells caused by exposure to asbestos. The average survival time after diagnosis is usually nine/twelve months. A multi-therapeutic approach is therefore required to treat and prevent recurrence. Boronated derivatives containing a carborane cage, a sulfamido group and an ureido functionality (CA-USF) have been designed, synthesised and tested, in order to couple Boron Neutron Capture Therapy (BNCT) and the inhibition of Carbonic Anhydrases (CAs), which are overexpressed in many tumours. In vitro studies showed greater inhibition than the reference drug acetazolamide (AZ). To increase solubility in aqueous media, CA-USFs were used as inclusion complexes of hydroxypropyl ß-cyclodextrin (HP-ß-CD) in all the inhibition and cell experiments. BNCT experiments carried out on AB22 (murine mesothelioma) cell lines showed a marked inhibition of cell proliferation by CA-USFs, and in one case a complete inhibition of proliferation twenty days after neutron irradiation. Finally, in vivo neutron irradiation experiments on a mouse model of mesothelioma demonstrated the efficiency of combining CA IX inhibition and BNCT treatment. Indeed, a greater reduction in tumour mass was observed in treated mice compared to untreated mice, with a significant higher effect when combined with BNCT. For in vivo experiments CA-USFs were administered as inclusion complexes of higher molecular weight ß-CD polymers thus increasing the selective extravasation into tumour tissue and reducing clearance. In this way, boron uptake was maximised and CA-USFs demonstrated to be in vivo well tolerated at a therapeutic dose. The therapeutic strategy herein described could be expanded to other cancers with increased CA IX activity, such as melanoma, glioma, and breast cancer.


Subject(s)
Boron Neutron Capture Therapy , Carbonic Anhydrases , Glioma , Melanoma , Mesothelioma , Mice , Animals , Mesothelioma/drug therapy , Glioma/drug therapy , Melanoma/drug therapy , Boron Compounds/therapeutic use
14.
Phys Med Biol ; 68(17)2023 08 23.
Article in English | MEDLINE | ID: mdl-37524085

ABSTRACT

Objective.Boron neutron capture therapy (BNCT) is an advanced cellular-level hadron therapy that has exhibited remarkable therapeutic efficacy in the treatment of locally invasive malignancies. Despite its clinical success, the intricate nature of relative biological effectiveness (RBE) and mechanisms responsible for DNA damage remains elusive. This work aims to quantify the RBE of compound particles (i.e. alpha and lithium) in BNCT based on the calculation of DNA damage yields via the Monte Carlo track structure (MCTS) simulation.Approach. The TOPAS-nBio toolkit was employed to conduct MCTS simulations. The calculations encompassed four steps: determination of the angle and energy spectra on the nuclear membrane, quantification of the database containing DNA damage yields for ions with specific angle and energy, accumulation of the database and spectra to obtain the DNA damage yields of compound particles, and calculation of the RBE by comparison yields of double-strand break (DSB) with the reference gamma-ray. Furthermore, the impact of cell size and microscopic boron distribution was thoroughly discussed.Main results. The DSB yields induced by compound particles in three types of spherical cells (radius equal to 10, 8, and 6µm) were found to be 13.28, 17.34, 22.15 Gy Gbp-1for boronophenylalanine (BPA), and 1.07, 3.45, 8.32 Gy Gbp-1for sodium borocaptate (BSH). The corresponding DSB-based RBE values were determined to be 1.90, 2.48, 3.16 for BPA and 0.15, 0.49, 1.19 for BSH. The calculated DSB-based RBE showed agreement with experimentally values of compound biological effectiveness for melanoma and gliosarcoma. Besides, the DNA damage yield and DSB-based RBE value exhibited an increasing trend as the cell radius decreased. The impact of the boron concentration ratio on RBE diminished once the drug enrichment surpasses a certain threshold.Significance. This work is potential to provide valuable guidance for accurate biological-weighted dose evaluation in BNCT.


Subject(s)
Boron Neutron Capture Therapy , Relative Biological Effectiveness , Boron Neutron Capture Therapy/methods , Boron , Gamma Rays , DNA Damage , Monte Carlo Method
15.
Phys Med Biol ; 69(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38048635

ABSTRACT

Objective. Boron neutron capture therapy (BNCT) and carbon ion radiotherapy (CIRT) are emerging treatment modalities for glioblastoma. In this study, we investigated the methodology and feasibility to combine BNCT and CIRT treatments. The combined treatment plan illustrated how the synergistic utilization of BNCT's biological targeting and CIRT's intensity modulation capabilities could lead to optimized treatment outcomes.Approach. The Monte Carlo toolkit, TOPAS, was employed to calculate the dose distribution for BNCT, while matRad was utilized for the optimization of CIRT. The biological effect-based approach, instead of the dose-based approach, was adopted to develop the combined BNCT-CIRT treatment plans for six patients diagnosed with glioblastoma, considering the different radiosensitivity and fraction. Five optional combined treatment plans with specific BNCT effect proportions for each patient were evaluated to identify the optimal treatment that minimizes damage on normal tissue.Main results. Individual BNCT exhibits a significant effect gradient along with the beam direction in the large tumor, while combined BNCT-CIRT treatments can achieve uniform effect delivery within the clinical target volume (CTV) through the effect filling with reversed gradient by the CIRT part. In addition, the increasing BNCT effect proportion in combined treatments can reduce damage in the normal brain tissue near the CTV. Besides, the combined treatments effectively minimize damage to the skin compared to individual BNCT treatments.Significance. The initial endeavor to combine BNCT and CIRT treatment plans is achieved by the effect-based optimization. The observed advantages of the combined treatment suggest its potential applicability for tumors characterized by pleomorphic, infiltrative, radioresistant and voluminous features.


Subject(s)
Boron Neutron Capture Therapy , Glioblastoma , Heavy Ion Radiotherapy , Humans , Glioblastoma/radiotherapy , Boron Neutron Capture Therapy/methods , Brain , Radiotherapy Dosage
16.
Sci Rep ; 13(1): 620, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635364

ABSTRACT

This study aims to develop poly lactic-co-glycolic acid (PLGA) nanoparticles with an innovative imaging-guided approach based on Boron Neutron Capture Therapy for the treatment of mesothelioma. The herein-reported results demonstrate that PLGA nanoparticles incorporating oligo-histidine chains and the dual Gd/B theranostic agent AT101 can successfully be exploited to deliver a therapeutic dose of boron to mesothelioma cells, significantly higher than in healthy mesothelial cells as assessed by ICP-MS and MRI. The selective release is pH responsive taking advantage of the slightly acidic pH of the tumour extracellular environment and triggered by the protonation of imidazole groups of histidine. After irradiation with thermal neutrons, tumoral and healthy cells survival and clonogenic ability were evaluated. Obtained results appear very promising, providing patients affected by this rare disease with an improved therapeutic option, exploiting PLGA nanoparticles.


Subject(s)
Boron Neutron Capture Therapy , Mesothelioma, Malignant , Mesothelioma , Nanoparticles , Humans , Boron Neutron Capture Therapy/methods , Precision Medicine , Glycols , Histidine , Mesothelioma/diagnostic imaging , Mesothelioma/radiotherapy , Hydrogen-Ion Concentration
17.
Cancers (Basel) ; 15(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37509243

ABSTRACT

Boron Neutron Capture Therapy (BNCT) is an innovative and highly selective treatment against cancer. Nowadays, in vivo boron dosimetry is an important method to carry out such therapy in clinical environments. In this work, different imaging methods were tested for dosimetry and tumor monitoring in BNCT based on a Compton camera detector. A dedicated dataset was generated through Monte Carlo tools to study the imaging capabilities. We first applied the Maximum Likelihood Expectation Maximization (MLEM) iterative method to study dosimetry tomography. As well, two methods based on morphological filtering and deep learning techniques with Convolutional Neural Networks (CNN), respectively, were studied for tumor monitoring. Furthermore, clinical aspects such as the dependence on the boron concentration ratio in image reconstruction and the stretching effect along the detector position axis were analyzed. A simulated spherical gamma source was studied in several conditions (different detector distances and boron concentration ratios) using MLEM. This approach proved the possibility of monitoring the boron dose. Tumor monitoring using the CNN method shows promising results that could be enhanced by increasing the training dataset.

18.
Phys Med ; 94: 75-84, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34999515

ABSTRACT

PURPOSE: One of the obstacles to the application of Boron Neutron Capture Therapy (BNCT) and Proton Boron Fusion Therapy (PBFT) concerns the measurement of borated carriers' biodistribution. The objective of the present study was to evaluate the in vitro internalization of the 19F-labelled p-boronophenylalanine (19F-BPA) in the human cancer pancreatic cell line (PANC-1) for the potential application of BNCT and PBFT in pancreatic cancer. The 19F-BPA carrier has the advantage that its bio-distribution may be monitored in vivo using 19F-Nuclear Magnetic Resonance (19F NMR). MATERIALS AND METHODS: The 19F-BPA internalization in PANC-1 cells was evaluated using three independent techniques on cellular samples left in contact with growing medium enriched with 13.6 mM 19F-BPA corresponding to a 11B concentration of 120 ppm: neutron autoradiography, which quantifies boron; liquid chromatography hyphenated to tandem mass spectrometry and UV-Diode Array Detection (UV-DAD), which quantifies 19F-BPA molecule; and 19F NMR spectroscopy, which detects fluorine nuclei. RESULTS: Our studies suggested that 19F-BPA is internalized by PANC-1 cells. The three methods provided consistent results of about 50% internalization fraction at 120 ppm of 11B. Small variations (less than 15%) in internalization fraction are mainly dependent on the proliferation state of the cells. CONCLUSIONS: The ability of 19F NMR spectroscopy to study 19F-BPA internalization was validated by well-established independent techniques. The multimodal approach we used suggests 19F-BPA as a promising BNCT/PBFT carrier for the treatment of pancreatic cancer. Since the quantification is performed at doses useful for BNCT/PBFT, 19F NMR can be envisaged to monitor 19F-BPA bio-distribution during the therapy.


Subject(s)
Boron Neutron Capture Therapy , Pancreatic Neoplasms , Proton Therapy , Boron , Boron Compounds , Humans , Pancreatic Neoplasms/radiotherapy , Tissue Distribution
19.
Chemistry ; 17(30): 8479-86, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21671294

ABSTRACT

The upregulation of low-density lipoprotein (LDL) transporters in tumour cells has been exploited to deliver a sufficient amount of gadolinium/boron/ligand (Gd/B/L) probes for neutron capture therapy, a binary chemio-radiotherapy for cancer treatment. The Gd/B/L probe consists of a carborane unit (ten B atoms) bearing an aliphatic chain on one side (to bind LDL particles), and a Gd(III)/1,4,7,10-tetraazacyclododecane monoamide complex on the other (for detection by magnetic resonance imaging (MRI)). Up to 190 Gd/B/L probes were loaded per LDL particle. The uptake from tumour cells was initially assessed on cell cultures of human hepatoma (HepG2), murine melanoma (B16), and human glioblastoma (U87). The MRI assessment of the amount of Gd/B/L taken up by tumour cells was validated by inductively coupled plasma-mass-spectrometric measurements of the Gd and B content. Measurements were undertaken in vivo on mice bearing tumours in which B16 tumour cells were inoculated at the base of the neck. From the acquisition of magnetic resonance images, it was established that after 4-6 hours from the administration of the Gd/B/L-LDL particles (0.1 and 1 mmol kg(-1) of Gd and (10)B, respectively) the amount of boron taken up in the tumour region is above the threshold required for successful NCT treatment. After neutron irradiation, tumour growth was followed for 20 days by MRI. The group of treated mice showed markedly lower tumour growth with respect to the control group.


Subject(s)
Boron/pharmacology , Carrier Proteins/metabolism , Gadolinium/pharmacology , Magnetic Resonance Imaging , Neutron Capture Therapy/methods , Animals , Boron/chemistry , Carrier Proteins/chemistry , Cell Line, Tumor , Gadolinium/chemistry , Humans , Melanoma, Experimental , Mice , Molecular Structure , Up-Regulation
20.
Appl Radiat Isot ; 167: 109353, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33039761

ABSTRACT

In Boron Neutron Capture Therapy, the boronated drug plays a leading role in delivering a lethal dose to the tumour. The effectiveness depends on the boron macroscopic concentration and on its distribution at sub-cellular level. This work shows a way to colocalize alpha particles and lithium ions tracks with cells. A neutron autoradiography technique is used, which combines images of cells with images of tracks produced in a solid-state nuclear track detector.


Subject(s)
Boron Neutron Capture Therapy/methods , Radiometry/methods , Autoradiography , Cell Line, Tumor , Dose-Response Relationship, Radiation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL