Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Immunol ; 25(7): 1193-1206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834865

ABSTRACT

Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown. Here, we identify a shape-sensing mechanism that increases the expression of the chemokine receptor CCR7 and guides dendritic cell migration from peripheral tissues to lymph nodes at steady state. This mechanism relies on the lipid metabolism enzyme cPLA2, requires nuclear envelope tensioning and is finely tuned by the ARP2/3 actin nucleation complex. We also show that this shape-sensing axis reprograms dendritic cell transcription by activating an IKKß-NF-κB-dependent pathway known to control their tolerogenic potential. These results indicate that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties and reveal a contribution of the physical properties of tissues to adaptive immunity.


Subject(s)
Cell Movement , Dendritic Cells , Homeostasis , Lymph Nodes , Mice, Inbred C57BL , Receptors, CCR7 , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Lymph Nodes/immunology , Lymph Nodes/cytology , Receptors, CCR7/metabolism , Mice , Cell Movement/immunology , Cell Shape , NF-kappa B/metabolism , Mice, Knockout , Signal Transduction/immunology , I-kappa B Kinase/metabolism , Actin-Related Protein 2-3 Complex/metabolism
2.
Cell Rep ; 43(4): 114096, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607919

ABSTRACT

Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.


Subject(s)
Antigens, Neoplasm , Carcinogenesis , Macrophages, Peritoneal , Animals , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/immunology , Female , Mice , Carcinogenesis/pathology , Carcinogenesis/immunology , Carcinogenesis/metabolism , Humans , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Cross-Priming/immunology , Cell Line, Tumor , Phagosomes/metabolism , Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Actins/metabolism
3.
Oncoimmunology ; 13(1): 2367843, 2024.
Article in English | MEDLINE | ID: mdl-38887373

ABSTRACT

Conventional type 1 dendritic cells (cDC1) are critical regulators of anti-tumoral T-cell responses. The structure and abundance of intercellular contacts between cDC1 and CD8 T cells in cancer tissues is important to determine the outcome of the T-cell response. However, the molecular determinants controlling the stability of cDC1-CD8 interactions during cancer progression remain poorly investigated. Here, we generated a genetic model of non-small cell lung cancer crossed to a fluorescent cDC1 reporter (KP-XCR1venus) to allow the detection of cDC1-CD8T cell clusters in tumor tissues across tumor stages. We found that cDC1-CD8 clusters are abundant and productive at the early stages of tumor development but progressively diminish in advanced tumors. Transcriptional profiling and flow cytometry identified the adhesion molecule ALCAM/CD166 (Activated Leukocyte Cell Adhesion Molecule, ligand of CD6) as highly expressed by lung cDC1 and significantly downregulated in advanced tumors. Analysis of human datasets indicated that ALCAM is downregulated in non-small cell lung cancer and its expression correlates to better prognosis. Mechanistically, triggering ALCAM on lung cDC1 induces cytoskeletal remodeling and contact formation whereas its blockade prevents T-cell activation. Together, our results indicate that ALCAM is important to stabilize cDC1-CD8 interactions at early tumor stages, while its loss in advanced tumors contributes to immune evasion.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung , Dendritic Cells , Lung Neoplasms , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Mice , Antigens, CD/metabolism , Antigens, CD/genetics , Antigens, CD/immunology , Fetal Proteins/metabolism , Fetal Proteins/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Communication/immunology , Activated-Leukocyte Cell Adhesion Molecule
4.
Nat Commun ; 15(1): 2280, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480738

ABSTRACT

Cross-presentation by type 1 DCs (cDC1) is critical to induce and sustain antitumoral CD8 T cell responses to model antigens, in various tumor settings. However, the impact of cross-presenting cDC1 and the potential of DC-based therapies in tumors carrying varied levels of bona-fide neoantigens (neoAgs) remain unclear. Here we develop a hypermutated model of non-small cell lung cancer in female mice, encoding genuine MHC-I neoepitopes to study neoAgs-specific CD8 T cell responses in spontaneous settings and upon Flt3L + αCD40 (DC-therapy). We find that cDC1 are required to generate broad CD8 responses against a range of diverse neoAgs. DC-therapy promotes immunogenicity of weaker neoAgs and strongly inhibits the growth of high tumor-mutational burden (TMB) tumors. In contrast, low TMB tumors respond poorly to DC-therapy, generating mild CD8 T cell responses that are not sufficient to block progression. scRNA transcriptional analysis, immune profiling and functional assays unveil the changes induced by DC-therapy in lung tissues, which comprise accumulation of cDC1 with increased immunostimulatory properties and less exhausted effector CD8 T cells. We conclude that boosting cDC1 activity is critical to broaden the diversity of anti-tumoral CD8 T cell responses and to leverage neoAgs content for therapeutic advantage.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Female , Mice , Animals , Dendritic Cells , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , CD8-Positive T-Lymphocytes , Cross-Priming
5.
Oncoimmunology ; 11(1): 2059876, 2022.
Article in English | MEDLINE | ID: mdl-35402081

ABSTRACT

Lung tumor-infiltrating neutrophils are known to support growth and dissemination of cancer cells and to suppress T cell responses. However, the precise impact of tissue neutrophils on programming and differentiation of anticancer CD8 T cells in vivo remains poorly understood. Here, we identified cancer cell-autonomous secretion of CXCL5 as sufficient to drive infiltration of mature, protumorigenic neutrophils in a mouse model of non-small cell lung cancer (NSCLC). Consistently, CXCL5 transcripts correlate with neutrophil density and poor prognosis in a large human lung adenocarcinoma compendium. CXCL5 genetic deletion, unlike antibody-mediated depletion, completely and selectively prevented neutrophils accumulation in lung tissues. Depletion of tumor-infiltrating neutrophils promoted expansion of tumor-specific CD8 T cells, differentiation into effector cells and acquisition of cytolytic functions. Transfer of effector CD8 T cells into neutrophil-rich tumors, inhibited IFN-ϒ production, indicating active suppression of effector functions. Importantly, blocking neutrophils infiltration in the lung, overcame resistance to checkpoint blockade. Hence, this study demonstrates that neutrophils curb acquisition of cytolytic functions in lung tumor tissues and suggests targeting of CXCL5 as a strategy to restore anti-tumoral T cell functions.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung/pathology , Lung Neoplasms/drug therapy , Mice , Neutrophils
6.
Front Immunol ; 12: 657344, 2021.
Article in English | MEDLINE | ID: mdl-34084165

ABSTRACT

Modified or misplaced DNA can be recognized as a danger signal by mammalian cells. Activation of cellular responses to DNA has evolved as a defense mechanism to microbial infections, cellular stress, and tissue damage, yet failure to control this mechanism can lead to autoimmune diseases. Several monogenic and multifactorial autoimmune diseases have been associated with type-I interferons and interferon-stimulated genes (ISGs) induced by deregulated recognition of self-DNA. Hence, understanding how cellular mechanism controls the pathogenic responses to self-nucleic acid has important clinical implications. Fine-tuned membrane trafficking and cellular compartmentalization are two major factors that balance activation of DNA sensors and availability of self-DNA ligands. Intracellular transport and organelle architecture are in turn regulated by cytoskeletal dynamics, yet the precise impact of actin remodeling on DNA sensing remains elusive. This review proposes a critical analysis of the established and hypothetical connections between self-DNA recognition and actin dynamics. As a paradigm of this concept, we discuss recent evidence of deregulated self-DNA sensing in the prototypical actin-related primary immune deficiency (Wiskott-Aldrich syndrome). We anticipate a broader impact of actin-dependent processes on tolerance to self-DNA in autoimmune disorders.


Subject(s)
Autoimmunity , DNA/immunology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Toll-Like Receptor 9/metabolism , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Cytoskeleton/metabolism , Endosomes/metabolism , Humans , Phagocytes/immunology , Phagocytes/metabolism , Protein Binding , Protein Transport , Signal Transduction
7.
JCI Insight ; 5(17)2020 09 03.
Article in English | MEDLINE | ID: mdl-32721945

ABSTRACT

Dysregulated sensing of self-nucleic acid is a leading cause of autoimmunity in multifactorial and monogenic diseases. Mutations in Wiskott-Aldrich syndrome protein (WASp), a key regulator of cytoskeletal dynamics in immune cells, cause autoimmune manifestations and increased production of type I IFNs by innate cells. Here we show that immune complexes of self-DNA and autoantibodies (DNA-ICs) contribute to elevated IFN levels via activation of the cGAS/STING pathway of cytosolic sensing. Mechanistically, lack of endosomal F-actin nucleation by WASp caused a delay in endolysosomal maturation and prolonged the transit time of ingested DNA-ICs. Stalling in maturation-defective organelles facilitated leakage of DNA-ICs into the cytosol, promoting activation of the TBK1/STING pathway. Genetic deletion of STING and STING and cGAS chemical inhibitors abolished IFN production and rescued systemic activation of IFN-stimulated genes in vivo. These data unveil the contribution of cytosolic self-nucleic acid sensing in WAS and underscore the importance of WASp-mediated endosomal actin remodeling in preventing innate activation.


Subject(s)
DNA/immunology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Wiskott-Aldrich Syndrome Protein/metabolism , Actins/metabolism , Animals , Autoantibodies/immunology , Cells, Cultured , Dendritic Cells/immunology , Endosomes/metabolism , Immunity, Innate , Interferons/metabolism , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL