Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Biol Rep ; 51(1): 537, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642174

ABSTRACT

BACKGROUND: Hexaploid bread wheat underwent a series of polyploidization events through interspecific hybridizations that conferred adaptive plasticity and resulted in duplication and neofunctionalization of major agronomic genes. The genetic architecture of polyploid wheat not only confers adaptive plasticity but also offers huge genetic diversity. However, the contribution of different gene copies (homeologs) encoded from different subgenomes (A, B, D) at different growth stages remained unexplored. METHODS: In this study, hybrid of elite cultivars of wheat were developed via reciprocal crosses (cytoplasm swapping) and phenotypically evaluated. We assessed differential expression profiles of yield-related negative regulators in these cultivars and their F1 hybrids and identified various cis-regulatory signatures by employing bioinformatics tools. Furthermore, the preferential expression patterns of the syntenic triads encoded from A, B, and D subgenomes were assessed to decipher their functional redundancy at six different growth stages. RESULTS: Hybrid progenies showed better heterosis such as up to 17% increase in the average number of grains and up to 50% increase in average thousand grains weight as compared to mid-parents. Based on the expression profiling, our results indicated significant dynamic transcriptional expression patterns, portraying the different homeolog-dominance at the same stage in the different cultivars and their hybrids. Albeit belonging to same syntenic triads, a dynamic trend was observed in the regulatory signatures of these genes that might be influencing their expression profiles. CONCLUSION: These findings can substantially contribute and provide insights for the selective introduction of better cultivars into traditional and hybrid breeding programs which can be harnessed for the improvement of future wheat.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Hybridization, Genetic , Hybrid Vigor/genetics
2.
Biochem Genet ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664326

ABSTRACT

Improving the low productivity levels of native cattle breeds in smallholder farming systems is a pressing concern in Pakistan. Crossbreeding high milk-yielding holstein friesian (HF) breed with the adaptability and heat tolerance of Sahiwal cattle has resulted in offspring that are well-suited to local conditions and exhibit improved milk yield. The exploration of how desirable traits in crossbred dairy cattle are selected has not yet been investigated. This study aims to provide the first overview of the selective pressures on the genome of crossbred dairy cattle in Pakistan. A total of eighty-one crossbred, thirty-two HF and twenty-four Sahiwal cattle were genotyped, and additional SNP genotype data for HF and Sahiwal were collected from a public database to equate the sample size in each group. Within-breed selection signatures in crossbreds were investigated using the integrated haplotype score. Crossbreds were also compared to each of their parental breeds to discover between-population signatures of selection using two approaches: cross-population extended haplotype homozygosity and fixation index. We identified several overlapping genes associated with production, immunity, and adaptation traits, including U6, TMEM41B, B4GALT7, 5S_rRNA, RBM27, POU4F3, NSD1, PRELID1, RGS14, SLC34A1, TMED9, B4GALT7, OR2AK3, OR2T16, OR2T60, OR2L3, and CTNNA1. Our results suggest that regions responsible for milk traits have generally experienced stronger selective pressure than others.

3.
Mamm Genome ; 34(4): 602-614, 2023 12.
Article in English | MEDLINE | ID: mdl-37804434

ABSTRACT

Linkage disequilibrium (LD) affects genomic studies accuracy. High-density genotyping platforms identify SNPs across animal genomes, increasing LD evaluation resolution for accurate analysis. This study aimed to evaluate the decay and magnitude of LD in a cohort of 81 crossbred dairy cattle using the GGP_HDv3_C Bead Chip. After quality control, 116,710 Single Nucleotide Polymorphisms (SNPs) across 2520.241 Mb of autosomes were retained. LD extent was assessed between autosomal SNPs within a 10 Mb range using the r2 statistics. LD value declined as inter-marker distance increased. The average r2 value was 0.24 for SNP pairs < 10 kb apart, decreasing to 0.13 for 50-100 kb distances. Minor allele frequency (MAF) and sample size significantly impact LD. Lower MAF thresholds result in smaller r2 values, while higher thresholds show increased r2 values. Additionally, smaller sample sizes exhibit higher average r2 values, especially for larger physical distance intervals (> 50 kb) between SNP pairs. Effective population size and inbreeding coefficient were 150 and 0.028 for the present generation, indicating a decrease in genetic diversity over time. These findings imply that the utilization of high-density SNP panels and customized/breed-specific SNP panels represent a highly favorable approach for conducting genome-wide association studies (GWAS) and implementing genomic selection (GS) in the Bos indicus cattle breeds, whose genomes are still largely unexplored. Furthermore, it is imperative to devise a meticulous breeding strategy tailored to each herd, aiming to enhance desired traits while simultaneously preserving genetic diversity.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Animals , Cattle/genetics , Linkage Disequilibrium , Population Density , Pakistan , Gene Frequency , Genotype
4.
Bioinformatics ; 38(Suppl_2): ii75-ii81, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36124806

ABSTRACT

MOTIVATION: Machine-learning-based prediction of compound-protein interactions (CPIs) is important for drug design, screening and repurposing. Despite numerous recent publication with increasing methodological sophistication claiming consistent improvements in predictive accuracy, we have observed a number of fundamental issues in experiment design that produce overoptimistic estimates of model performance. RESULTS: We systematically analyze the impact of several factors affecting generalization performance of CPI predictors that are overlooked in existing work: (i) similarity between training and test examples in cross-validation; (ii) synthesizing negative examples in absence of experimentally verified negative examples and (iii) alignment of evaluation protocol and performance metrics with real-world use of CPI predictors in screening large compound libraries. Using both state-of-the-art approaches by other researchers as well as a simple kernel-based baseline, we have found that effective assessment of generalization performance of CPI predictors requires careful control over similarity between training and test examples. We show that, under stringent performance assessment protocols, a simple kernel-based approach can exceed the predictive performance of existing state-of-the-art methods. We also show that random pairing for generating synthetic negative examples for training and performance evaluation results in models with better generalization in comparison to more sophisticated strategies used in existing studies. Our analyses indicate that using proposed experiment design strategies can offer significant improvements for CPI prediction leading to effective target compound screening for drug repurposing and discovery of putative chemical ligands of SARS-CoV-2-Spike and Human-ACE2 proteins. AVAILABILITY AND IMPLEMENTATION: Code and supplementary material available at https://github.com/adibayaseen/HKRCPI. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Angiotensin-Converting Enzyme 2 , Machine Learning , Humans , Ligands , SARS-CoV-2
5.
Plant Cell ; 32(12): 3978-4001, 2020 12.
Article in English | MEDLINE | ID: mdl-33037150

ABSTRACT

Plant receptor-like kinases (RLKs) are important players in response to pathogen infections. Verticillium and Fusarium wilts, caused by Verticillium dahliae (Vd) and Fusarium oxysporum f. sp vasinfectum (Fov), respectively, are among the most devastating diseases in cotton (Gossypium spp). To understand the cotton response to these soil-borne fungal pathogens, we performed a genome-wide in silico characterization and functional screen of diverse RLKs for their involvement in cotton wilt diseases. We identified Gossypium hirsutum GhWAK7A, a wall-associated kinase, that positively regulates cotton response to both Vd and Fov infections. Chitin, the major constituent of the fungal cell wall, is perceived by lysin-motif-containing RLKs (LYKs/CERK1), leading to the activation of plant defense against fungal pathogens. A conserved chitin sensing and signaling system is present in cotton, including chitin-induced GhLYK5-GhCERK1 dimerization and phosphorylation, and contributes to cotton defense against Vd and Fov Importantly, GhWAK7A directly interacts with both GhLYK5 and GhCERK1 and promotes chitin-induced GhLYK5-GhCERK1 dimerization. GhWAK7A phosphorylates GhLYK5, which itself does not have kinase activity, but requires phosphorylation for its function. Consequently, GhWAK7A plays a crucial role in chitin-induced responses. Thus, our data reveal GhWAK7A as an important component in cotton response to fungal wilt pathogens by complexing with the chitin receptors.


Subject(s)
Ascomycota/physiology , Fusarium/physiology , Gossypium/enzymology , Plant Diseases/immunology , Plant Proteins/metabolism , Signal Transduction , Chitin/metabolism , Disease Resistance , Gossypium/genetics , Gossypium/microbiology , Host-Pathogen Interactions , Phosphorylation , Plant Diseases/microbiology , Plant Proteins/genetics
6.
Physiol Plant ; 172(2): 990-1006, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33547812

ABSTRACT

Water shortage limits agricultural productivity, so strategies to get higher yields in dry agricultural systems is vital to circumvent the effect of climate change and land-shortage. The plant rhizosphere harbors beneficial bacteria able to confer biotic/abiotic tolerance along with a positive impact on plant growth. Herein, three bacterial strains, Proteus mirabilis R2, Pseudomonas balearica RF-2 and Cronobacter sakazakii RF-4 (accessions: LS975374, LS975373, LS975370, respectively) isolated from native desert-weeds were investigated for their response to improve wheat growth under drought stress. The bacteria showed drought tolerance up to 20% polyethylene glycol (PEG; -0.6 MPa), and salt (65-97 g l-1 ), 1-aminocyclopropane-1-carboxylate (ACC)-deaminase activity, P/Zn/K-solubilization, calcite degradation, IAA, and siderophore production. The plant growth-promoting rhizobacteria (PGPR) were evaluated on wheat under water stress. The P. balearica strain RF-2 primed seeds showed a maximum promptness index and germination index under PEG-stress, that is, 68% and 100%, respectively. Inoculation significantly improved plant growth, leaf area, and biomass under water stress. P. mirabilis R2 inoculated plant leaves showed the highest water contents as compared to the plants inoculated with other strains. C. sakazakii RF-4 inoculated plants showed minimum cell injury, electrolyte leakage, and maximum cell membrane stability at PEG stress. After 13 days exposure to drought, C. sakazakii RF-4 treated plants showed an overall higher expression of cytosolic ascorbate peroxidase (cAPX) and ribulose-bisphosphate carboxylase (rbcL) genes. The activity of stress-induced catalase and polyphenol oxidase was reduced, while that of peroxidase and superoxide dismutase increased after inoculation but the response was temporal. Taken together, this data explains that different PGPR (especially C. sakazakii RF-4) modulate differential responses in wheat that eventually leads towards drought tolerance, hence, it has the potential to enhance crop production in arid regions.


Subject(s)
Dehydration , Triticum , Pseudomonas , Seeds
7.
Genomics ; 112(1): 263-275, 2020 01.
Article in English | MEDLINE | ID: mdl-30826442

ABSTRACT

Aquaporins (AQPs) are water channel proteins that play a significant role in drought stress. Although the AQPs identified in multiple plant species, there is no detailed evolutionary and comparative study of AQPs regarding chickpea plant. The current study involved evolutionary analyses coupled with promoter and expression analyses of chickpea AQPs (CaAQPs). A total of 924 non-redundant AQPs were studied in 24 plant species including algae, mosses, lycophytes, monocots and dicots. Phylogenetic analysis demonstrated a clear divergence of eight AQP subfamilies (LIPs, SIPs, GIPs, NIPs, XIPs, PIPs, HIPs and TIPs). The comparative phylogenetic trees of AQP subfamilies among Arabidopsis, soybean, common bean, maize and chickpea demonstrated that the AQPs were highly species-specific. Interestingly, the dual NPA motif was conserved in all species. However, the ar/R selectivity filter signatures [W/T/S/N/G/A]-[V/S/L/I/A]-[S/G/A]-R (in NIPs), F-H-T-R (in PIPs), [H/N/Q/S]-[A/I/L/S/V]-[A/G]-[A/C/L/M/R/V] (in TIPs) and [V/I/L/M]-[V/I/A/F/M]-[A/S/F/C]-[N/F/L/I/A/S (in SIPs) were found in five species. Moreover, the Froger's positions (P1-P5) were found as [F/L/Y]-[S/T]-A-Y-[L/I/M/V/F] (in NIPs), [Q/E/M]-S-A-F-W (in PIPs), [A/L/S/T/V]-[A/C/N/S/T/V]-[P/R/S]-[Y/N/F]-[W/Q] (in TIPs) and [I/M/F]-[A/V]-[A/V]-Y-W (in SIPs). The MEME motif analyses showed that most of the motifs were specific to subfamily and subgroups. Tissue-specific expression profiling of CaAQPs revealed that CaTIPs and CaPIPs are highly expressed in most of the tissues, while CaNIPs and CaSIPs have low expression. In promoter analysis of CaAQPs, multiple stress-related cis-acting elements e.g. MYB, MYC, ABRE, etc. were found. Semi-quantitative RT-PCR analysis showed that CaPIP2;3 and CaNIP3;1 are positive regulator, while CaSIP1;1 and CaPIP2;1 have a negative role in drought tolerance. The findings and implications of this study are discussed in detail.


Subject(s)
Aquaporins/genetics , Cicer/genetics , Multigene Family , Plant Proteins/genetics , Amino Acid Motifs , Aquaporins/classification , Aquaporins/metabolism , Cicer/metabolism , Droughts , Evolution, Molecular , Gene Expression Profiling , Phylogeny , Plant Proteins/classification , Plant Proteins/metabolism , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction
8.
Plant Biotechnol J ; 18(3): 691-706, 2020 03.
Article in English | MEDLINE | ID: mdl-31448544

ABSTRACT

Cultivated cotton (Gossypium hirsutum) is the most important fibre crop in the world. Cotton leaf curl disease (CLCuD) is the major limiting factor and a threat to textile industry in India and Pakistan. All the local cotton cultivars exhibit moderate to no resistance against CLCuD. In this study, we evaluated an exotic cotton accession Mac7 as a resistance source to CLCuD by challenging it with viruliferous whiteflies and performing qPCR to evaluate the presence/absence and relative titre of CLCuD-associated geminiviruses/betasatellites. The results indicated that replication of pathogenicity determinant betasatellite is significantly attenuated in Mac7 and probably responsible for resistance phenotype. Afterwards, to decipher the genetic basis of CLCuD resistance in Mac7, we performed RNA sequencing on CLCuD-infested Mac7 and validated RNA-Seq data with qPCR on 24 independent genes. We performed co-expression network and pathway analysis for regulation of geminivirus/betasatellite-interacting genes. We identified nine novel modules with 52 hubs of highly connected genes in network topology within the co-expression network. Analysis of these hubs indicated the differential regulation of auxin stimulus and cellular localization pathways in response to CLCuD. We also analysed the differential regulation of geminivirus/betasatellite-interacting genes in Mac7. We further performed the functional validation of selected candidate genes via virus-induced gene silencing (VIGS). Finally, we evaluated the genomic context of resistance responsive genes and found that these genes are not specific to A or D sub-genomes of G. hirsutum. These results have important implications in understanding CLCuD resistance mechanism and developing a durable resistance in cultivated cotton.


Subject(s)
Begomovirus , Disease Resistance , Gossypium/genetics , Plant Diseases/genetics , Gene Silencing , Genes, Plant , Gossypium/virology , India , Pakistan , Plant Diseases/virology
9.
BMC Genomics ; 20(1): 507, 2019 Jun 18.
Article in English | MEDLINE | ID: mdl-31215403

ABSTRACT

BACKGROUND: Whiteflies (Bemisia tabaci) are phloem sap-sucking pests that because of their broad host range and ability to transmit viruses damage crop plants worldwide. B. tabaci are now known to be a complex of cryptic species that differ from each other in many characteristics such as mode of interaction with viruses, invasiveness, and resistance to insecticides. Asia II 1 is an indigenous species found on the Indian sub-continent and south-east Asia while the species named as Middle East Asia Minor 1 (MEAM1), likely originated from the Middle-East and has spread worldwide in recent decades. The purpose of this study is to find genomic differences between these two species. RESULTS: Sequencing of the nuclear genome of Asia II 1 with Illumina HiSeq and MiSeq generated 198.90 million reads that covers 88% of the reference genome. The sequence comparison with MEAM1 identified 2,327,972 SNPs and 202,479 INDELs. In Total, 1294 genes were detected with high impact variants. The functional analysis revealed that some of the genes are involved in virus transmission including 4 genes in Tomato yellow leaf curl virus (TYLCV) transmission, 96 in Tomato crinivirus (ToCV) transmission, and 14 genes in insecticide resistance. CONCLUSIONS: These genetic differences between Asia II 1 and MEAM1 may underlie the major biological differences between the two species such as virus transmission, insecticide resistance, and range of host plants. The present study provides new genomic data and information resources for Asia II 1 that will not only contribute to the species delimitation of whitefly, but also help in conceiving future research studies to develop more targeted management strategies against whitefly.


Subject(s)
Genes, Insect/genetics , Genetic Variation , Hemiptera/physiology , Hemiptera/virology , Plant Viruses/physiology , Whole Genome Sequencing , Animals , Cell Nucleus/genetics , Gene Ontology , Genomics , Hemiptera/cytology , Hemiptera/genetics , Insecticide Resistance/genetics , Species Specificity
10.
Int J Phytoremediation ; 20(7): 675-681, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29723052

ABSTRACT

Phytoremediation is a promising approach for the cleanup of soil contaminated with petroleum hydrocarbons. This study aimed to develop plant-bacterial synergism for the successful remediation of crude oil-contaminated soil. A consortia of three endophytic bacteria was augmented to two grasses, Leptochloa fusca and Brachiaria mutica, grown in oil-contaminated soil (46.8 g oil kg-1 soil) in the vicinity of an oil exploration and production company. Endophytes augmentation improved plant growth, crude oil degradation, and soil health. Maximum oil degradation (80%) was achieved with B. mutica plants augmented with the endophytes and it was significantly (P < 0.05) higher than the use of plants or bacteria individually. Moreover, endophytes showed more persistence, the abundance and expression of alkB gene in the rhizosphere as well as in the endosphere of the tested plants than in unvegetated soil. A positive relationship (r = 0.70) observed between gene expression and crude oil reduction indicates that catabolic gene expression is important for hydrocarbon mineralization. This investigation showed that the use of endophytes with appropriate plant is an effective strategy for the cleanup of oil-contaminated soil under field conditions.


Subject(s)
Petroleum , Soil Pollutants , Bacteria , Biodegradation, Environmental , Soil
11.
Virus Genes ; 53(6): 759-761, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28721488

ABSTRACT

Cotton leaf curl disease (CLCuD) has been a problem for cotton production in Pakistan and India since the early 1990s. The disease is caused by begomoviruses associated with a specific satellite, the cotton leaf curl Multan betasatellite (CLCuMB). In 2001, resistance introduced into cotton was broken by a recombinant begomovirus, Cotton leaf curl Kokhran virus strain Burewala (CLCuKoV-Bur). Unusually, in resistant cotton, this virus lacked an intact transcriptional activator protein (TrAP) gene, with the capacity to encode only 35 of the usual ~134 amino acids. Recently, isolates of CLCuKoV-Bur with a longer, but still truncated, TrAP gene have been identified in cotton breeding lines lacking the earlier resistance. This suggests that more pathogenic viruses with a full TrAP could return to cotton if the earlier resistance is not maintained in ongoing breeding efforts to produce CLCuD-resistant cotton varieties. This conclusion is supported by recent studies showing the reappearance of pre-resistance-breaking begomoviruses, with full-length TrAP genes, in cotton.


Subject(s)
Begomovirus/genetics , Gossypium/virology , Plant Diseases/virology , Plant Leaves/virology , DNA, Satellite/genetics , DNA, Viral/genetics , Genes, Viral/genetics , India , Pakistan , Satellite Viruses/genetics , Viral Proteins/genetics
13.
Virol J ; 12: 38, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25890080

ABSTRACT

BACKGROUND: Tomato yellow leaf curl virus (TYLCV), a monopartite begomovirus (family Geminiviridae) is responsible for heavy yield losses for tomato production around the globe. In Oman at least five distinct begomoviruses cause disease in tomato, including TYLCV. Unusually, TYLCV infections in Oman are sometimes associated with a betasatellite (Tomato leaf curl betasatellite [ToLCB]; a symptom modulating satellite). RNA interference (RNAi) can be used to develop resistance against begomoviruses at either the transcriptional or post-transcriptional levels. RESULTS: A hairpin RNAi (hpRNAi) construct to express double-stranded RNA homologous to sequences of the intergenic region, coat protein gene, V2 gene and replication-associated gene of Tomato yellow leaf curl virus-Oman (TYLCV-OM) was produced. Initially, transient expression of the hpRNAi construct at the site of virus inoculation was shown to reduce the number of plants developing symptoms when inoculated with either TYLCV-OM or TYLCV-OM with ToLCB-OM to Nicotiana benthamiana or tomato. Solanum lycopersicum L. cv. Pusa Ruby was transformed with the hpRNAi construct and nine confirmed transgenic lines were obtained and challenged with TYLCV-OM and ToLCB-OM by Agrobacterium-mediated inoculation. For all but one line, for which all plants remained symptomless, inoculation with TYLCV-OM led to a proportion (≤25%) of tomato plants developing symptoms of infection. For inoculation with TYLCV-OM and ToLCB-OM all lines showed a proportion of plants (≤45%) symptomatic. However, for all infected transgenic plants the symptoms were milder and virus titre in plants was lower than in infected non-transgenic tomato plants. CONCLUSIONS: These results show that RNAi can be used to develop resistance against geminiviruses in tomato. The resistance in this case is not immunity but does reduce the severity of infections and virus titer. Also, the betasatellite may compromise resistance, increasing the proportion of plants which ultimately show symptoms.


Subject(s)
Begomovirus/genetics , Plant Diseases/virology , Plants, Genetically Modified/virology , RNA Interference , Satellite Viruses/genetics , Solanum lycopersicum/virology , Begomovirus/physiology , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Oman , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/prevention & control , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Satellite Viruses/physiology
14.
Trends Plant Sci ; 29(2): 108-110, 2024 02.
Article in English | MEDLINE | ID: mdl-37863729

ABSTRACT

Selfish genetic elements (SGEs) display biased transmission to offspring. However, their breeding potential has remained obscure. Wang et al. recently reported a natural gene-drive system that can be harnessed to prevent hybrid incompatibility and to develop a synthetic gene-drive (SGD) system for crop improvement.


Subject(s)
Gene Drive Technology , Plant Breeding , Plants/genetics
15.
Trends Plant Sci ; 29(7): 715-717, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38331684

ABSTRACT

Pathogenic viruses are a constant threat to all organisms, including plants. However, in plants, a small group of cells (stem cells) protect themselves from viral invasion. Recently, Incarbone et al. uncovered a novel salicylic acid (SA) and RNAi mechanism of stem cell resistance, broadening our understanding of RNAi-mediated antiviral plant immunity.


Subject(s)
Plant Diseases , Plant Immunity , Salicylic Acid , Salicylic Acid/metabolism , Plant Diseases/virology , Plant Diseases/immunology , Immunity, Innate , RNA Interference , Plants/immunology , Plants/virology , Plant Viruses/physiology , Stem Cells/immunology
16.
Sci Rep ; 14(1): 13532, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866855

ABSTRACT

Cotton (Gossypium hirsutum) is an economically potent crop in many countries including Pakistan, India, and China. For the last three decades, cotton production is under the constant stress of cotton leaf curl disease (CLCuD) caused by begomoviruses/satellites complex that is transmitted through the insect pest, whitefly (Bemisia tabaci). In 2018, we identified a highly recombinant strain; Cotton leaf curl Multan virus-Rajasthan (CLCuMuV-Raj), associated with the Cotton leaf curl Multan betasatellite-Vehari (CLCuMuBVeh). This strain is dominant in cotton-growing hub areas of central Punjab, Pakistan, causing the third epidemic of CLCuD. In the present study, we have explored the CLCuD diversity from central to southern districts of Punjab (Faisalabad, Lodhran, Bahawalpur, Rahimyar Khan) and the major cotton-growing region of Sindh (Tandojam), Pakistan for 2 years (2020-2021). Interestingly, we found same virus (CLCuMuV-Raj) and associated betasatellite (CLCuMuBVeh) strain that was previously reported with the third epidemic in the central Punjab region. Furthermore, we found minor mutations in two genes of CLCuMuV-Raj C4 and C1 in 2020 and 2021 respectively as compared to its isolates in 2018, which exhibited virus evolution. Surprisingly, we did not find these mutations in CLCuMuV-Raj isolates identified from Sindh province. The findings of the current study represent the stability of CLCuMuV-Raj and its spread toward the Sindh province where previously Cotton leaf curl Kokhran virus (CLCuKoV) and Cotton leaf curl Shahdadpur virus (CLCuShV) have been reported. The findings of the current study demand future research on CLCuD complex to explore the possible reasons for prevalence in the field and how the virus-host-vector compatible interaction can be broken to develop resistant cultivars.


Subject(s)
Begomovirus , Gossypium , Plant Diseases , Begomovirus/genetics , Begomovirus/pathogenicity , Begomovirus/physiology , Pakistan/epidemiology , Plant Diseases/virology , Gossypium/virology , Phylogeny , Hemiptera/virology
17.
Gene ; 908: 148282, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38360122

ABSTRACT

Whitefly is one of the most hazardous insect pests that infests a wide range of host plants and causes huge damage to crop worldwide. In order to engineer plants resilient to whitefly stress, it is important to identify and validate the responsive genes by exploring the molecular dynamics of plants under stress conditions. In this study three genes BG, NPR1, and PAL genes have been studied in cotton for elucidating their role in whitefly stress response. Initially, insilico approach was utilized to investigate the domains and phylogeny of BG, NPR1 and PAL genes and found out that these genes showed remarkable resemblance in four cotton species Gossypium hirsutum, G. barbadense, G. arboreum, and G. raimondii. In BG proteins the main functional domain was X8 belonging to glycohydro superfamily, in NPR1 two main functional domains were BTB_POZ at N terminal and NPR1_like_C at C terminal. In PAL functional domain PLN was found which belongs to Lyase class I superfamily. The promoter analysis of these genes displayed enrichment of hormone, stress and stimuli responsive cis elements. Through Virus Induced Gene Silencing (VIGS), these genes were targeted and kept under whitefly infestation. Overall, the whitefly egg and nymph production were observed 60-70% less on gene down regulated plants as compared to control plants. The qPCR-based expression analysis of certain stress-responsive genes showed that in BG down regulated plants the elevated expression of these whitefly responsive genes was detected, in NPR1 down regulated plants JAZ1 and HSP were found up regulated, ERF1 and WRKY40 didn't show significant differential expression, while MAPK6 was slightly down regulated. In PAL down regulated plants ERF1 and JAZ1 showed elevated expression while others didn't show significant alternation. Differential expression in gene down-regulated plants showed that whitefly responsive genes act in a complex inter signaling pathway and their expression impact each other. This study provides valuable insight into the structural and functional analysis of important whitefly responsive genes BG, NPR1, and PAL. The results will pave a path to future development of whitefly resilient crops.


Subject(s)
Gossypium , Hemiptera , Animals , Gossypium/metabolism , Hemiptera/genetics , Hemiptera/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Gene Silencing , Gene Expression Regulation, Plant , Phylogeny , Multigene Family
18.
Sci Rep ; 14(1): 11930, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789717

ABSTRACT

Nucleotide-binding site (NBS) domain genes are one of the superfamily of resistance genes involved in plant responses to pathogens. The current study identified 12,820 NBS-domain-containing genes across 34 species covering from mosses to monocots and dicots. These identified genes are classified into 168 classes with several novel domain architecture patterns encompassing significant diversity among plant species. Several classical (NBS, NBS-LRR, TIR-NBS, TIR-NBS-LRR, etc.) and species-specific structural patterns (TIR-NBS-TIR-Cupin_1-Cupin_1, TIR-NBS-Prenyltransf, Sugar_tr-NBS etc.) were discovered. We observed 603 orthogroups (OGs) with some core (most common orthogroups; OG0, OG1, OG2, etc.) and unique (highly specific to species; OG80, OG82, etc.) OGs with tandem duplications. The expression profiling presented the putative upregulation of OG2, OG6, and OG15 in different tissues under various biotic and abiotic stresses in susceptible and tolerant plants to cotton leaf curl disease (CLCuD). The genetic variation between susceptible (Coker 312) and tolerant (Mac7) Gossypium hirsutum accessions identified several unique variants in NBS genes of Mac7 (6583 variants) and Coker312 (5173 variants). The protein-ligand and proteins-protein interaction showed a strong interaction of some putative NBS proteins with ADP/ATP and different core proteins of the cotton leaf curl disease virus. The silencing of GaNBS (OG2) in resistant cotton through virus-induced gene silencing (VIGS) demonstrated its putative role in virus tittering. The presented study will be further helpful in understanding the plant adaptation mechanism.


Subject(s)
Plant Proteins , Binding Sites , Plant Proteins/genetics , Plant Proteins/metabolism , Nucleotides/genetics , Nucleotides/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Diseases/virology , Genes, Plant , Phylogeny , Plants/genetics , Gene Expression Profiling , Protein Domains
19.
Virol J ; 10: 231, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23844988

ABSTRACT

BACKGROUND: Cotton leaf curl disease, caused by single-stranded DNA viruses of the genus Begomovirus (family Geminiviridae), is a major constraint to cotton cultivation across Pakistan and north-western India. At this time only cotton varieties with moderate tolerance are available to counter the disease. microRNAs (miRNAs) are a class of endogenous small RNA molecules that play an important role in plant development, signal transduction, and response to biotic and a biotic stress. Studies have shown that miRNAs can be engineered to alter their target specificity. Such artificial miRNAs (amiRNAs) have been shown to provide resistance against plant-infecting viruses. RESULTS: Two amiRNA constructs, based on the sequence of cotton miRNA169a, were produced containing 21 nt of the V2 gene sequence of Cotton leaf curl Burewala virus (CLCuBuV) and transformed into Nicotiana benthamiana. The first amiRNA construct (P1C) maintained the miR169a sequence with the exception of the replaced 21 nt whereas in the second (P1D) the sequence of the miRNA169a backbone was altered to restore some of the hydrogen bonding of the mature miRNA duplex. P1C transgenic plants showed good resistance when challenge with CLCuBV; plants being asymptomatic with low viral DNA levels. The resistance to heterologous viruses was lower and correlated with the numbers of sequence mismatches between the amiRNA and the V2 gene sequence. P1D plants showed overall poorer resistance to challenge with all viruses tested. CONCLUSIONS: The results show that the amiRNA approach can deliver efficient resistance in plants against a monopartite begomoviruses and that this has the potential to be broad-spectrum, providing protection from a number of viruses. Additionally the findings indicate that the levels of resistance depend upon the levels of complementarity between the amiRNA and the target sequence and the sequence of the miRNA backbone, consistent with earlier studies.


Subject(s)
Begomovirus/growth & development , Begomovirus/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Nicotiana/virology , Plant Diseases/prevention & control , Plant Diseases/virology , Disease Resistance , Gossypium/genetics , Gossypium/virology , India , Pakistan , Plants, Genetically Modified , Nicotiana/genetics
20.
Biotechnol Lett ; 35(6): 969-74, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23397269

ABSTRACT

A newly-synthesized cry2Ab gene was characterized in Nicotiana tabacum, before its further transformation in cotton. Synthetic cry2Ab gene was cloned in pGreen0029 and its expression was transiently analyzed at mRNA level through agroinfiltration in tobacco. The mRNA of cry2Ab was detected after 72 h agroinfiltration through PCR using total plant RNA. This construct was then transformed into N. tabacum through Agrobacterium. Insect bioassays were conducted on detached leaves using first instar Spodoptera exigua larvae; after 96 h significant insect mortality was recorded. This newly synthesized gene was effective in controlling S. exigua first instar larvae. It can be used in combinations with other Bt genes like cry1Ac for developing resistance against major insect pests of cotton and further widening the insect control spectrum.


Subject(s)
Bacterial Proteins/biosynthesis , Endotoxins/biosynthesis , Hemolysin Proteins/biosynthesis , Nicotiana/genetics , Plants, Genetically Modified , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Biological Assay , Endotoxins/genetics , Gene Expression , Gossypium/genetics , Hemolysin Proteins/genetics , Larva/drug effects , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Spodoptera/drug effects , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL