Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Affiliation country
Publication year range
1.
Nanotechnology ; 32(47)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34375957

ABSTRACT

Two-dimensional (2d) transition-metal dichalcogenides (TMDCs) are promising candidate materials for developing next generation nano optoelectronic devices, due to their strong interaction with light. In addition, the free of surface dangling bonds makes it possible to stacking any different types of 2D TMDCs together to form heterojunctions with desirable band structures for various applications. However, most of the 2D TMDCs are bipolar or strong unipolar n-type doped, while very few of them show weak p-type doping, which severely affects the performance of the formed heterojunctions. In this work, we fabricated a SnSe2/WSe2heterojunction of type II band alignment with a small bandgap of ∼0.1 eV, which is ideally for developing optoelectronic devices responsible to a broad light spectrum. N2O plasma treatment is applied to enhance the p-type doping of both WSe2and SnSe2, which results in the increased on-off ratio of n-type SnSe2by 50 times and the hole mobility of WSe2by 527 times. The WSe2/SnSe2heterostructure also achieves a decent performance as a p-n junction, which exhibits photo responsivity of 450 mA W-1and 133 mA W-1for 700 nm visible light and 1600 nm infrared light, respectively, without any gate or source-drain bias, showing great photovoltaic effect. Moreover, the heterojunction shows great promise as an artificial visual neuron, which can differentiate the dark, visible and infrared light illumination conditions by applying a series of electrical pulses through the back-gate electrode.

2.
Nanotechnology ; 29(28): 285501, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-29668484

ABSTRACT

Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young's modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.

3.
Small Methods ; : e2301698, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607954

ABSTRACT

Imitating human neural networks via bio-inspired electronics advances human-machine interfaces (HMI), overcoming von Neumann limitations and enabling efficient, low-energy data processing in the big data era. However, single-contact mode HMIs have inherent limitations in terms of their capabilities and performances, such as constrained adaptability to dynamic environments, and reduced cognitive processing capabilities. Here, a dual-interactive-mode HMI system based on a triboelectric nanogenerator (TENG) and heterojunction synaptic transistor (HJST) is proposed for both contact and non-contact applications. The TENG incorporates a poly-methyl meth-acrylate (PMMA)-NiCo2S4/S film, in which the NiCo2S4/S composite traps and blocks electrons to optimize charge generation and storage. The heterojunction structure, mitigates the Debye screening effect, thereby improving transistor characteristics and reliability. The integrated TENG-HJST system exhibits synaptic functions, including excitatory/inhibitory postsynaptic current (EPSC/IPSC), paired-pulse facilitation/depression (PPF/PPD), and synaptic plasticity, enabling emulation of neural behavior and advanced information processing. Moreover, neural morphology manipulation is demonstrated in practical tasks, such as controlling international chess games. By integrating the TENG-HJST device with a robotic hand, conscious artificial responses are generated, enhancing event accuracy. This breakthrough in dual-interactive-mode interfacing holds promise for HMI systems and neural prostheses.

4.
5.
Beilstein J Nanotechnol ; 10: 1745-1753, 2019.
Article in English | MEDLINE | ID: mdl-31501746

ABSTRACT

Anisotropic 2D materials exhibit novel optical, electrical and thermoelectric properties that open possibilities for a great variety of angle-dependent devices. Recently, quantitative research on 1T'-WTe2 has been reported, revealing its fascinating physical properties such as non-saturating magnetoresistance, highly anisotropic crystalline structure and anisotropic optical/electrical response. Especially for its anisotropic properties, surging research interest devoted solely to understanding its structural and optical properties has been undertaken. Here we report quantitative, comprehensive work on the highly anisotropic, optical, electrical and optoelectronic properties of few-layer 1T'-WTe2 by azimuth-dependent reflectance difference microscopy, DC conductance measurements, as well as polarization-resolved and wavelength-dependent optoelectrical measurements. The electrical conductance anisotropic ratio is found to ≈103 for a thin 1T'-WTe2 film, while the optoelectronic anisotropic ratio is around 300 for this material. The polarization dependence of the photo-response is ascribed to the unique anisotropic in-plane crystal structure, consistent with the optical absorption anisotropy results. In general, 1T'-WTe2, with its highly anisotropic electrical and photoresponsivity reported here, demonstrates a route to exploit the intrinsic anisotropy of 2D materials and the possibility to open up new ways for applications of 2D materials for light polarization detection.

6.
ACS Nano ; 13(3): 3310-3319, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30840440

ABSTRACT

Mechanical strain induced changes in the electronic properties of two-dimensional (2D) materials is of great interest for both fundamental studies and practical applications. The anisotropic 2D materials may further exhibit different electronic changes when the strain is applied along different crystalline axes. The resulting anisotropic piezoresistive phenomenon not only reveals distinct lattice-electron interaction along different principle axes in low-dimensional materials but also can accurately sense/recognize multidimensional strain signals for the development of strain sensors, electronic skin, human-machine interfaces, etc. In this work, we systematically studied the piezoresistive effect of an anisotropic 2D material of rhenium disulfide (ReS2), which has large anisotropic ratio. The measurement of ReS2 piezoresistance was experimentally performed on the devices fabricated on a flexible substrate with electrical channels made along the two principle axes, which were identified noninvasively by the reflectance difference microscopy developed in our lab. The result indicated that ReS2 had completely opposite (positive and negative) piezoresistance along two principle axes, which differed from any previously reported anisotropic piezoresistive effect in other 2D materials. We attributed the opposite anisotropic piezoresistive effect of ReS2 to the strain-induced broadening and narrowing of the bandgap along two principle axes, respectively, which was demonstrated by both reflectance difference spectroscopy and theoretical calculations.

7.
ACS Appl Mater Interfaces ; 10(41): 35664-35669, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30246520

ABSTRACT

The selective and sensitive detection of chemical agents is demanded by a wide range of practical applications. In particular, sensing of volatile organic compounds (VOCs) at parts-per-billion level is critical for environmental monitoring, process control, and early diagnosis of human diseases. In this report, we demonstrate a specific and highly sensitive detection of ketone compounds using two-dimensional (2D) molybdenum ditelluride (MoTe2). We investigated the effects of UV activation on the sensing performance to a variety of VOCs. It is found that the MoTe2 field-effect transistor (FET) exhibits an opposite sensing response to ketone compounds before and after UV light activation, whereas the responses to other types of VOCs remain in the same direction regardless of the illumination. This unique behavior enables the discriminative detection of ketone molecules including acetone and pentanone from other VOCs in a gas mixture. The activation of UV light also results in a very high sensitivity and low detection limit toward acetone (∼0.2 ppm). Moreover, the MoTe2 FET shows a stable sensing performance in a high humidity environment. The results demonstrate the potential of MoTe2 as a promising candidate for high-performance acetone sensors in important applications such as human breath analysis. The scheme of light-tunable sensing can be applied to a broad range of sensing platforms based on 2D materials.

8.
ACS Appl Mater Interfaces ; 10(31): 26533-26538, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30016063

ABSTRACT

High-performance p-n junctions based on atomically thin two-dimensional (2D) materials are the fundamental building blocks for many nanoscale functional devices that are ideal for future electronic and optoelectronic applications. The lateral p-n homojunctions with conveniently tunable band offset outperform vertically stacked ones, however, the realization of lateral p-n homojunctions usually require efficient carrier-type modulation in a single 2D material flake, which remains a tech challenge. In this work, we have realized effective carrier-type modulation in a single MoSe2 flake, and thus, a lateral MoSe2 p-n homojunction is achieved by sequential treatment of air rapid thermal annealing and triphenylphosphine (PPh3) solution coating. The rapid thermal annealing modulates MoSe2 flakes from naturally n-type doping to degenerated p-type doping and improves the hole mobility of the MoSe2 field effect transistors from 0.2 to 71.5 cm2·V-1·s-1. Meanwhile, the n-doping of MoSe2 is increased by drop-coating PPh3 solution on the MoSe2 surface with increased electron mobility from 78.6 to 412.8 cm2·V-1·s-1. The as-fabricated lateral MoSe2 p-n homojunction presents a high rectification ratio of 104, an ideality factor of 1.2, and enhanced photoresponse of 1.3 A·W-1 to visible light. This efficient carrier-type modulation within a single MoSe2 flake has potential for use in various functional devices.

9.
ACS Appl Mater Interfaces ; 10(33): 27840-27849, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30062874

ABSTRACT

Efficient modulation of carrier concentration is fundamentally important for tailoring the electronic and photoelectronic properties of semiconducting materials. Photoinduced doping is potentially a promising way to realize such a goal for atomically thin nanomaterials in a rapid and defect-free manner. However, the wide applications of photoinduced doping in nanomaterials are severely constrained by the low doping concentration and poor stability that can be reached. Here, we propose a novel photoinduced doping mechanism based on the external photoelectric effect of metal coating on nanomaterials to significantly enhance the achievable doping concentration and stability. This approach is preliminarily demonstrated by an MX2 (M is Mo or Re; X is S or Se) nanoflake modified through a simple process of sequentially depositing and annealing an Au layer on the surface of the flake. Under ultraviolet (UV) light illumination, the modified MX2 achieves degenerated n-type doping density of 1014 cm-2 rapidly according to the experimentally observed >104 times increment in the channel current. The doping level persists after the removal of UV illumination with a nonobservable decrease over 1 day in vacuum (less than 23% over 7 days under an ambient environment). This photoinduced doping approach may contribute a major leap to the development of photocontrollable nanoelectronics.

10.
Nanoscale ; 10(17): 8329-8337, 2018 May 03.
Article in English | MEDLINE | ID: mdl-29687795

ABSTRACT

Optical anisotropy is one of the most fundamental physical characteristics of emerging low-symmetry two-dimensional (2D) materials. It provides abundant structural information and is crucial for creating diverse nanoscale devices. Here, we have proposed an azimuth-resolved microscopic approach to directly resolve the normalized optical difference along two orthogonal directions at normal incidence. The differential principle ensures that the approach is only sensitive to anisotropic samples and immune to isotropic materials. We studied the optical anisotropy of bare and encapsulated black phosphorus (BP) and unveiled the interference effect on optical anisotropy, which is critical for practical applications in optical and optoelectronic devices. A multi-phase model based on the scattering matrix method was developed to account for the interference effect and then the crystallographic directions were unambiguously determined. Our result also suggests that the optical anisotropy is a probe to measure the thickness with monolayer resolution. Furthermore, the optical anisotropy of rhenium disulfide (ReS2), another class of anisotropic 2D materials, with a 1T distorted crystal structure, was investigated, which demonstrates that our approach is suitable for other anisotropic 2D materials. This technique is ideal for optical anisotropy characterization and will inspire future efforts in BP and related anisotropic 2D nanomaterials for engineering new conceptual nanodevices.

SELECTION OF CITATIONS
SEARCH DETAIL