Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Annu Rev Neurosci ; 45: 471-489, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803589

ABSTRACT

Unimodal sensory loss leads to structural and functional changes in both deprived and nondeprived brain circuits. This process is broadly known as cross-modal plasticity. The evidence available indicates that cross-modal changes underlie the enhanced performances of the spared sensory modalities in deprived subjects. Sensory experience is a fundamental driver of cross-modal plasticity, yet there is evidence from early-visually deprived models supporting an additional role for experience-independent factors. These experience-independent factors are expected to act early in development and constrain neuronal plasticity at later stages. Here we review the cross-modal adaptations elicited by congenital or induced visual deprivation prior to vision. In most of these studies, cross-modal adaptations have been addressed at the structural and functional levels. Here, we also appraise recent data regarding behavioral performance in early-visually deprived models. However, further research is needed to explore how circuit reorganization affects their function and what brings about enhanced behavioral performance.


Subject(s)
Neuronal Plasticity , Sensory Deprivation , Brain , Humans , Neuronal Plasticity/physiology , Sensory Deprivation/physiology , Vision, Ocular
2.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38918041

ABSTRACT

Schizophrenia is associated with altered cortical circuitry. Although the schizophrenia risk gene NRG1 is known to affect the wiring of inhibitory interneurons, its role in excitatory neurons and axonal development is unclear. Here, we investigated the role of Nrg1 in the development of the corpus callosum, the major interhemispheric connection formed by cortical excitatory neurons. We found that deletion of Nrg1 impaired callosal axon development in vivo. Experiments in vitro and in vivo demonstrated that Nrg1 is cell-autonomously required for axonal outgrowth and that intracellular signaling of Nrg1 is sufficient to promote axonal development in cortical neurons and specifically in callosal axons. Furthermore, our data suggest that Nrg1 signaling regulates the expression of Growth Associated Protein 43, a key regulator of axonal growth. In conclusion, our study demonstrates that NRG1 is involved in the formation of interhemispheric callosal connections and provides a novel perspective on the relevance of NRG1 in excitatory neurons and in the etiology of schizophrenia.


Subject(s)
Axons , Corpus Callosum , Neuregulin-1 , Signal Transduction , Animals , Neuregulin-1/metabolism , Neuregulin-1/genetics , Corpus Callosum/metabolism , Axons/metabolism , Mice , Schizophrenia/metabolism , Schizophrenia/genetics , Schizophrenia/etiology , Schizophrenia/pathology , Mice, Knockout , Neurons/metabolism , GAP-43 Protein/metabolism , GAP-43 Protein/genetics , Mice, Inbred C57BL
3.
Neuroscience ; 508: 87-97, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35878717

ABSTRACT

Sensory processing relies on the correct development of thalamocortical loops. Visual corticothalamic axons (CTAs) invade the dorsolateral geniculate nucleus (dLGN) of the thalamus in early postnatal mice according to a regulated program that includes activity-dependent mechanisms. Spontaneous retinal activity influences the thalamic incursion of CTAs, yet the perinatal thalamus also generates intrinsic patterns of spontaneous activity whose role in modulating afferent connectivity remains unknown. Here, we found that patterned spontaneous activity in the dLGN contributes to proper spatial and temporal innervation of CTAs. Disrupting patterned spontaneous activity in the dLGN delays corticogeniculate innervation under normal conditions and upon eye enucleation. The delayed innervation was evident throughout the first two postnatal weeks but resumes after eye-opening, suggesting that visual experience is necessary for the homeostatic recovery of corticogeniculate innervation.


Subject(s)
Visual Cortex , Mice , Animals , Thalamus , Geniculate Bodies , Axons , Retina , Visual Pathways
4.
Science ; 377(6608): 845-850, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35981041

ABSTRACT

Whereas sensory perception relies on specialized sensory pathways, it is unclear whether these pathways originate as modality-specific circuits. We demonstrated that somatosensory and visual circuits are not by default segregated but require the earliest retinal activity to do so. In the embryo, somatosensory and visual circuits are intermingled in the superior colliculus, leading to cortical multimodal responses to whisker pad stimulation. At birth, these circuits segregate, and responses switch to unimodal. Blocking stage I retinal waves prolongs the multimodal configuration into postnatal life, with the superior colliculus retaining a mixed somato-visual molecular identity and defects arising in the spatial organization of the visual system. Hence, the superior colliculus mediates the timely segregation of sensory modalities in an input-dependent manner, channeling specific sensory cues to their appropriate sensory pathway.


Subject(s)
Afferent Pathways , Superior Colliculi , Vision, Ocular , Animals , Cues , Mice , Superior Colliculi/physiology , Vibrissae , Vision, Ocular/physiology
5.
Cell Rep ; 39(2): 110667, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35417707

ABSTRACT

Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise. CRc density, in turn, regulates the distribution of upper layer interneurons and excitatory synapses, thereby drastically impairing the apical dendrite activity of output pyramidal neurons. In contrast, postnatal sensory-evoked activity had a limited impact on L1 and selectively perturbed basal dendrites synaptogenesis. Collectively, our study highlights a remarkable interplay between thalamic activity and CRc in L1 functional wiring, with major implications for our understanding of cortical development.


Subject(s)
Interneurons , Pyramidal Cells , Dendrites/physiology , Interneurons/physiology , Neurons/physiology , Thalamus
SELECTION OF CITATIONS
SEARCH DETAIL