Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nat Immunol ; 23(2): 217-228, 2022 02.
Article in English | MEDLINE | ID: mdl-35102344

ABSTRACT

During inflammation, Ly6Chi monocytes are rapidly mobilized from the bone marrow (BM) and are recruited into inflamed tissues, where they undergo monocyte-to-phagocyte transition (MTPT). The in vivo developmental trajectories of the MTPT and the contribution of individual cytokines to this process remain unclear. Here, we used a murine model of neuroinflammation to investigate how granulocyte-macrophage colony-stimulating factor (GM-CSF) and interferon-γ (IFNγ), two type 1 cytokines, controlled MTPT. Using genetic fate mapping, gene targeting and high-dimensional single-cell multiomics analyses, we found that IFNγ was essential for the gradual acquisition of a mature inflammatory phagocyte phenotype in Ly6Chi monocytes, while GM-CSF was required to license interleukin-1ß (IL-1ß) production, phagocytosis and oxidative burst. These results suggest that the proinflammatory cytokine environment guided MTPT trajectories in the inflamed central nervous system (CNS) and indicated that GM-CSF was the most prominent target for the disarming of monocyte progenies during neuroinflammation.


Subject(s)
Cell Differentiation/physiology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interferon-gamma/metabolism , Monocytes/metabolism , Neuroinflammatory Diseases/metabolism , Phagocytes/metabolism , Animals , Cytokines/metabolism , Female , Macrophages/metabolism , Macrophages/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Monocytes/physiology , Neuroinflammatory Diseases/physiopathology , Phagocytes/physiology
2.
Nat Commun ; 11(1): 3272, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32601304

ABSTRACT

Tumor-draining lymph node (TDLN) invasion by metastatic cells in breast cancer correlates with poor prognosis and is associated with local immunosuppression, which can be partly mediated by regulatory T cells (Tregs). Here, we study Tregs from matched tumor-invaded and non-invaded TDLNs, and breast tumors. We observe that Treg frequencies increase with nodal invasion, and that Tregs express higher levels of co-inhibitory/stimulatory receptors than effector cells. Also, while Tregs show conserved suppressive function in TDLN and tumor, conventional T cells (Tconvs) in TDLNs proliferate and produce Th1-inflammatory cytokines, but are dysfunctional in the tumor. We describe a common transcriptomic signature shared by Tregs from tumors and nodes, including CD80, which is significantly associated with poor patient survival. TCR RNA-sequencing analysis indicates trafficking between TDLNs and tumors and ongoing Tconv/Treg conversion. Overall, TDLN Tregs are functional and express a distinct pattern of druggable co-receptors, highlighting their potential as targets for cancer immunotherapy.


Subject(s)
Lymph Nodes/pathology , Lymphatic Metastasis/immunology , T-Lymphocytes, Regulatory/immunology , B7-1 Antigen/metabolism , Breast Neoplasms/pathology , Female , Humans , Immunosuppression Therapy , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymphatic Metastasis/pathology , T-Lymphocytes, Regulatory/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL