Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Amino Acids ; 54(2): 215-228, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34854957

ABSTRACT

The GABAergic and glutamatergic neurotransmission systems are involved in seizures and other disorders of the central nervous system (CNS). Benzofuran derivatives often serve as the core in drugs used to treat such neurological disorders. The aim of this study was to synthesize new γ-amino acids structurally related to GABA and derived from 2,3-disubstituted benzofurans, analyze in silico their potential toxicity, ADME properties, and affinity for the GluN1-GluN2A NMDA receptor, and evaluate their potential activity and neuronal mechanisms in a murine model of pentylenetetrazol (PTZ)- and 4-aminopyridine (4-AP)-induced seizures. The in silico analysis evidenced a low risk of toxicity for the test compounds as well as the probability that they can cross the blood-brain barrier (BBB) to reach their targets in the CNS. According to docking simulations, these compounds bind at the active site of the NMDA glutamate receptor with high affinity. The in vivo assays demonstrated that 4 protects against 4-AP-induced seizure episodes, suggesting negative allosteric modulation (NAMs) at the glutamatergic NMDA receptor. Contrarily, 3 (the regioisomer of 4) and its racemic derivatives (cis-2,3-dihydrobenzofurans) were previously described to exacerbate such episodes, pointing to their positive allosteric modulation (PAMs) of the same receptor.


Subject(s)
Benzofurans , Receptors, N-Methyl-D-Aspartate , Amino Acids , Animals , Benzofurans/pharmacology , Ligands , Mice , Pentylenetetrazole , Receptors, N-Methyl-D-Aspartate/metabolism
2.
Drug Dev Res ; 81(2): 256-266, 2020 04.
Article in English | MEDLINE | ID: mdl-31875337

ABSTRACT

Alzheimer's disease (AD) is clearly linked to the decline of acetylcholine (ACh) effects in the brain. These effects are regulated by the hydrolytic action of acetylcholinesterase (AChE). Therefore, a central palliative treatment of AD is the administration of AChE inhibitors although additional mechanisms are currently described and tested for generating advantageous therapeutic strategies. In this work, we tested new arylamides and arylimides as potential inhibitors of AChE using in silico tools. Then, these compounds were tested in vitro, and two selected compounds, C7 and C8, as well as propranolol showed inhibition of AChE. In addition, they demonstrated an advantageous acute toxicity profile compared to that of galantamine as a reference AChE inhibitor. in vivo evaluation of memory performance enhancement was performed in an animal model of cognitive disturbance with each of these compounds and propranolol individually as well as each compound combined with propranolol. Memory improvement was observed in each case, but without a significant additive effect with the combinations.


Subject(s)
Amides/administration & dosage , Cholinesterase Inhibitors/administration & dosage , Imides/administration & dosage , Memory Disorders/drug therapy , Amides/chemical synthesis , Amides/chemistry , Amides/therapeutic use , Animals , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/therapeutic use , Computer Simulation , Disease Models, Animal , Drug Therapy, Combination , Humans , Imides/chemical synthesis , Imides/chemistry , Imides/therapeutic use , Male , Molecular Conformation , Molecular Docking Simulation , Propranolol , Rats
3.
Molecules ; 24(11)2019 May 30.
Article in English | MEDLINE | ID: mdl-31151186

ABSTRACT

Two 2,3-disubstituted benzofurans (1 and 2), analogs of gamma-aminobutyric acid (GABA), were synthesized to obtain their 2,3-dihydro derivatives from the Pd/C-driven catalytic reduction of the double bond in the furanoid ring. The synthesis produced surprising by-products. Therefore, theoretical calculations of global and local reactivity were performed based on Pearson's hard and soft acids and bases (HSAB) principle to understand the regioselectivity that occurred in the reduction of the olefinic carbons of the compounds. Local electrophilicity (ωk) was the most useful parameter for explaining the selectivity of the polar reactions. This local parameter was defined with the condensed Fukui function and redefined with the electrophilic (Pk+) Parr function. The similar patterns of both resulting sets of values helped to demonstrate the electrophilic behavior (soft acid) of the olefinic carbons in these compounds. The theoretical calculations, nuclear magnetic resonance, and resonance hybrids showed the moieties in each compound that are most susceptible to reduction.


Subject(s)
Benzofurans/chemistry , Models, Chemical , Oxidation-Reduction , Quantum Theory , Benzofurans/chemical synthesis , Catalysis , Chemistry Techniques, Synthetic , Magnetic Resonance Spectroscopy , Molecular Structure
4.
ChemMedChem ; 19(13): e202300615, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38554286

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder and the leading cause of dementia worldwide. It is characterized by a progressive decline in cholinergic neurotransmission. During the development of AD, acetylcholinesterase (AChE) binds to ß-amyloid peptides to form amyloid fibrils, which aggregate into plaque deposits. Meanwhile, tau proteins are hyperphosphorylated, forming neurofibrillary tangles (NFTs) that aggregate into inclusions. These complexes are cytotoxic for the brain, causing impairment of memory, attention, and cognition. AChE inhibitors are the main treatment for AD, but their effect is only palliative. This study aimed to design and synthesize novel benzofuran derivatives and evaluate their inhibition of AChE in vitro and in silico. Results: The seven synthesized benzofuran derivatives inhibited AChE in vitro. Benzofurans hydroxy ester 4, amino ester 5, and amido ester (±)-7 had the lowest inhibition constant (Ki) values and displayed good affinity for EeAChE in molecular docking. Six derivatives showed competitive inhibition, while the best compound (5: Ki=36.53 µM) exhibited uncompetitive inhibition. The amino, hydroxyl, amide, and ester groups of the ligands favored interaction with the enzyme by hydrogen bonds. Conclusion: Three benzofurans were promising AChE inhibitors with excellent Ki values. In future research on their their application to AD, 5 will be considered as the base structure.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Benzofurans , Cholinesterase Inhibitors , Molecular Docking Simulation , Benzofurans/chemistry , Benzofurans/chemical synthesis , Benzofurans/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Alzheimer Disease/drug therapy , Acetylcholinesterase/metabolism , Humans , Structure-Activity Relationship , Molecular Structure , Animals , Binding Sites , Electrophorus , Dose-Response Relationship, Drug
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2159-2170, 2024 04.
Article in English | MEDLINE | ID: mdl-37792048

ABSTRACT

Human ß3-adrenoceptor (ß3AR) agonists were considered potential agents for the treatment of metabolic disorders. However, compounds tested as ß3AR ligands have shown marked differences in pharmacological profile in rodent and human species, although these compounds remain attractive as they were successfully repurposed for the therapy of urinary incontinence. In this work, some biarylamine compounds were designed and tested in silico as potential ß3AR agonists on 3-D models of mouse or human ß3ARs. Based on the theoretical results, we identified, synthesized and tested a biarylamine compound (polibegron). In CHO-K1 cells expressing the human ß3AR, polibegron and the ß3AR agonist BRL 37344 were partial agonists for stimulating cAMP accumulation (50 and 57% of the response to isoproterenol, respectively). The potency of polibegron was 1.71- and 4.5-fold higher than that of isoproterenol and BRL37344, respectively. These results indicate that polibegron acts as a potent, but partial, agonist at human ß3ARs. In C57BL/6N mice with obesity induced by a high-fat diet, similar effects of the equimolar intraperitoneal administration of polibegron and BRL37344 were observed on weight, visceral fat and plasma levels of glucose, cholesterol and triglycerides. Similarities and differences between species related to ligand-receptor interactions can be useful for drug designing.


Subject(s)
Adrenergic beta-Agonists , Receptors, Adrenergic, beta-3 , Cricetinae , Humans , Mice , Animals , Isoproterenol , Receptors, Adrenergic, beta-3/metabolism , Mice, Inbred C57BL , CHO Cells , Cricetulus , Adrenergic beta-Agonists/pharmacology
6.
J Trace Elem Med Biol ; 72: 126979, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35364473

ABSTRACT

BACKGROUND: Boron is a trace element with increasing importance in drug design. In this sense, boronic acids are emerging as therapeutic agents for several diseases. METHODS: Herein, 3- and 4- acetamidophenylboronic acids and 4-acetamidophenylboronic acid pinacol ester were identified as potential inhibitors of acetylcholinesterase through docking assays on eel, rat, and human acetylcholinesterases indicating binding on the gorge region of the target enzymes. Then, these compounds were evaluated in vitro and in vivo. RESULTS: It was found these compounds showed ability to inhibit acetylcholinesterase as competitive and non-competitive inhibitors. But also, these compounds were non-toxic to PC12 cells at micromolar concentration, and they have the ability to protect those cells against damage by amyloid-beta. CONCLUSIONS: Noticeably, intraperitoneal administration of these boronic compounds to rats with the cognitive deficit induced by orchiectomy provided ameliorative effects on disrupted behavior and neuronal damage induced by hormonal deprivation. Additional approaches are required to evaluate the possibility of multiple mechanisms of action for the observed effects in the central nervous system.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Cholinesterase Inhibitors/pharmacology , Cognition , Neurons/metabolism , PC12 Cells , Rats
7.
Nutr Diabetes ; 10(1): 7, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32132523

ABSTRACT

BACKGROUDS: Cannabinoid receptor antagonists have been suggested as a novel treatment for obesity and diabetes. We have developed a synthetic cannabinoid receptor antagonist denominated BAR-1. As the function and integrity of a ß-cell cellular structure are important keys for diabetes onset, we evaluated the effects of pharmacological administration of BAR-1 on prediabetic and diabetic rodents. METHODS: CD-1 mice fed a hypercaloric diet or treated with streptozotocin were treated with 10 mg/kg BAR-1 for 2, 4 or 8 weeks. Body weight, oral glucose tolerance test, HbA1c, triglycerides and insulin in serum were measured. In isolated islets, we evaluated stimulated secretion and mRNA expression, and relative area of islets in fixed pancreases. Docking analysis of BAR-1 was complemented. RESULTS: BAR-1 treatment slowed down weight gain in prediabetic mice. Fasting glucose-insulin relation also decreased in BAR-1-treated mice and glucose-stimulated insulin secretion was increased in isolated islets, without effects in oral test. Diabetic mice treated with BAR-1 showed a reduced glucose and a partial recovery of islet integrity. Gene expression of insulin and glucagon showed biphasic behaviour, increasing after 4 weeks of BAR-1 administration; however, after 8 weeks, mRNA abundance decreased significantly. Administration of BAR-1 also prevents changes in endocannabinoid element expression observed in prediabetic mice. No changes were detected in other parameters studied, including the histological structure. A preliminary in-silico study suggests a close interaction with CB1 receptor. CONCLUSIONS: BAR-1 induces improvement of islet function, isolated from both prediabetic and diabetic mice. Effects of BAR-1 suggest a possible interaction with other cannabinoid receptors.


Subject(s)
Cannabinoid Receptor Antagonists/pharmacology , Diabetes Mellitus, Experimental/metabolism , Islets of Langerhans/drug effects , Prediabetic State/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Body Weight/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Glucose Tolerance Test , Glycated Hemoglobin/analysis , Insulin/blood , Insulin Secretion/drug effects , Male , Mice , Prediabetic State/drug therapy , Prediabetic State/pathology , Receptor, Cannabinoid, CB1/administration & dosage , Streptozocin , Triglycerides/blood
8.
J Hypertens ; 38(8): 1496-1503, 2020 08.
Article in English | MEDLINE | ID: mdl-32195823

ABSTRACT

OBJECTIVE: The α1D-adrenoreceptor (α1D-AR) is involved in angiotensin II-induced vascular remodeling and hypertension. Whether α1D-AR plays a role in hypertension-associated cardiac hypertrophy is unclear. Here we investigated effects of BMY 7378, a selective α1D-AR antagonist, on cardiac status in aged spontaneously hypertensive rats (SHR). METHODS: Male SHR were studied during the phase of developing hypertension (5 and 10 weeks old) and once hypertension was established (20 and 30 weeks old) to assess the evolution of cardiac hypertrophy. Age-matched WKY rats were studied as controls. Thirty-week-old SHR were treated for 4 weeks with BMY 7378 (10 mg/kg per day, o.a.), or captopril (angiotensin-converting enzyme inhibitor, 40 mg/kg per day, o.a.) (as a positive control). Blood pressure and cardiac function were measured in vivo, cardiac hypertrophy by histology, and α1D-AR protein expression by immunofluorescence. RESULTS: By 30 weeks of age, SHR exhibited significant hypertension and cardiac hypertrophy. BMY 7378 and captopril decreased blood pressure and improved hemodynamic parameters and cardiac function in treated SHR vs. untreated SHR (P < 0.05). Histology showed increased cardiomyocyte size, fibrosis, and left ventricular hypertrophy in SHR hearts. BMY 7378 ameliorated fibrosis and cardiac hypertrophy, but had no effect on cardiomyocyte size in SHR. Effects of BMY 7378 were associated with increased α1D-AR protein expression in SHR. CONCLUSION: Our data indicate that pharmacological antagonism of α1D-AR reduces blood pressure and associated cardiac hypertrophy in aged SHR. These findings suggest that the α1D-AR plays a pathophysiological role in the development of hypertension and cardiac target organ damage in SHR.


Subject(s)
Adrenergic alpha-Antagonists/pharmacology , Cardiomegaly/physiopathology , Heart/drug effects , Piperazines/pharmacology , Animals , Blood Pressure/drug effects , Rats , Rats, Inbred WKY
9.
Med Chem ; 15(1): 102-118, 2019.
Article in English | MEDLINE | ID: mdl-29793411

ABSTRACT

BACKGROUND: Thalidomide, the first synthesized phthalimide, has demonstrated sedative- hypnotic and antiepileptic effects on the central nervous system. N-substituted phthalimides have an interesting chemical structure that confers important biological properties. OBJECTIVE: Non-chiral (ortho and para bis-isoindoline-1,3-dione, phthaloylglycine) and chiral phthalimides (N-substituted with aspartate or glutamate) were synthesized and the sedative, anxiolytic and anticonvulsant effects were tested. METHOD: Homology modeling and molecular docking were employed to predict recognition of the analogues by hNMDA and mGlu receptors. The neuropharmacological activity was tested with the open field test and elevated plus maze (EPM). The compounds were tested in mouse models of acute convulsions induced either by pentylenetetrazol (PTZ; 90 mg/kg) or 4-aminopyridine (4-AP; 10 mg/kg). RESULTS: The ortho and para non-chiral compounds at 562.3 and 316 mg/kg, respectively, decreased locomotor activity. Contrarily, the chiral compounds produced excitatory effects. Increased locomotor activity was found with S-TGLU and R-TGLU at 100, 316 and 562.3 mg/kg, and S-TASP at 316 and 562.3 mg/kg. These molecules showed no activity in the EPM test or PTZ model. In the 4-AP model, however, S-TGLU (237.1, 316 and 421.7 mg/kg) as well as S-TASP and R-TASP (316 mg/kg) lowered the convulsive and death rate. CONCLUSION: The chiral compounds exhibited a non-competitive NMDAR antagonist profile and the non-chiral molecules possessed selective sedative properties. The NMDAR exhibited stereoselectivity for S-TGLU while it is not a preference for the aspartic derivatives. The results appear to be supported by the in silico studies, which evidenced a high affinity of phthalimides for the hNMDAR and mGluR type 1.


Subject(s)
Anti-Anxiety Agents/pharmacology , Anticonvulsants/pharmacology , Hypnotics and Sedatives/pharmacology , Phthalimides/pharmacology , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Humans , Hypnotics and Sedatives/chemical synthesis , Hypnotics and Sedatives/chemistry , Ligands , Locomotion/drug effects , Male , Mice , Molecular Docking Simulation , Phthalimides/chemical synthesis , Phthalimides/chemistry , Receptors, Metabotropic Glutamate/chemistry , Receptors, N-Methyl-D-Aspartate/chemistry , Seizures/drug therapy , Stereoisomerism
10.
Chem Cent J ; 12(1): 74, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29938351

ABSTRACT

Dioxoisoindolines have been included as a pharmacophore group in diverse drug-like molecules with a wide range of biological activity. Various reports have shown that phthalimide derivatives are potent inhibitors of AChE, a key enzyme involved in the deterioration of the cholinergic system during the development of Alzheimer's disease. In the present study, 2-(2-(3,4-dimethoxyphenyl)ethyl)isoindoline-1,3-dione was synthesized, crystallized and evaluated as an AChE inhibitor. The geometric structure of the crystal and the theoretical compound (from molecular modeling) were analyzed and compared, finding a close correlation. The formation of the C6-H6···O19 interaction could be responsible for the non-negligible out of phenyl plane deviation of the C19 methoxy group, the O3 from the carbonyl group lead to C16-H16···O3i intermolecular interactions to furnish C(9) and C(14) infinite chains within the (- 4 0 9) and (- 3 1 1) families of planes. Finally, the biological experiments reveal that the isoindoline-1,3-dione exerts a good competitive inhibition on AChE (Ki = 0.33-0.93 mM; 95% confidence interval) and has very low acute toxicity (LD50 > 1600 mg/kg) compared to the AChE inhibitors currently approved for clinical use.

11.
Oxid Med Cell Longev ; 2017: 2734976, 2017.
Article in English | MEDLINE | ID: mdl-29163752

ABSTRACT

The inflammatory condition of malignant tumors continually exposes cancer cells to reactive oxygen species, an oxidizing condition that leads to the activation of the antioxidant defense system. A similar activation occurs with glutathione production. This oxidant condition enables tumor cells to maintain the energy required for growth, proliferation, and evasion of cell death. The objective of the present study was to determine the effect on hepatocellular carcinoma cells of a combination treatment with maleic anhydride derivatives (prooxidants) and quercetin (an antioxidant). The results show that the combination of a prooxidant/antioxidant had a cytotoxic effect on HuH7 and HepG2 liver cancer cells, but not on either of two normal human epithelial cell lines or on primary hepatocytes. The combination treatment triggered apoptosis in hepatocellular carcinoma cells by activating the intrinsic pathway and causing S phase arrest during cell cycle progression. There is also clear evidence of a modification in cytoskeletal actin and nucleus morphology at 24 and 48 h posttreatment. Thus, the current data suggest that the combination of two anticarcinogenic drugs, a prooxidant followed by an antioxidant, can be further explored for antitumor potential as a new treatment strategy.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Cycle Checkpoints/genetics , Liver Neoplasms/genetics , Maleic Anhydrides/therapeutic use , Mitochondria/metabolism , Oxidative Stress/genetics , Quercetin/therapeutic use , Apoptosis , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Maleic Anhydrides/pharmacology , Quercetin/pharmacology
12.
Anticancer Agents Med Chem ; 16(12): 1615-1621, 2016.
Article in English | MEDLINE | ID: mdl-27141879

ABSTRACT

Thiol reagents were shown to act as potent inhibitors of L5178-Y murine leukemia cell proliferation. A series of aryl maleimides (AMI) was synthesized and evaluated theoretically for global and local reactivity, showing their selectivity for thiol groups, due to a reaction of the vinyl moiety (a soft acid) with thiols (a soft base). Two AMI that are benzoic acid derivatives (1f and 1h) were tested with an in vitro and ex vivo model to evaluate their reactivity with thiols and their activity in L5178-Y cells. The in vitro reactions clearly showed a selective Michael type 1,4-addition reaction between thiols (glutathione and N-acetylcysteine, which are nucleophiles) and the AMI (1f and 1h, which are electrophiles). In cell cultures, the compounds induced a decreasing cellular viability and an apoptotic effect of up to 59.8% at 48 h. The ex vivo experimental model showed an important reduction of thiol levels in cells treated with 1h. Decreased cellular viability and increased apoptosis were confirmed by flow cytometry, DNA fragmentation and microscopy analysis (cytological studies). The increase in apoptosis on L5178-Y cells probably occurred, at least in part, by a decrease in glutathione levels and an increase in free radicals concentration. The decreased glutathione levels seem to make cancer cells more susceptible to death by apoptosis, and should certainly make them more vulnerable to a less aggressive treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Leukemia/drug therapy , Maleimides/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Leukemia/pathology , Maleimides/chemistry , Mice , Molecular Structure , Quantum Theory , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL