Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Virol ; 93(24)2019 12 15.
Article in English | MEDLINE | ID: mdl-31578288

ABSTRACT

Coronaviruses (CoVs) have emerged from animal reservoirs to cause severe and lethal disease in humans, but there are currently no FDA-approved antivirals to treat the infections. One class of antiviral compounds, nucleoside analogues, mimics naturally occurring nucleosides to inhibit viral replication. While these compounds have been successful therapeutics for several viral infections, mutagenic nucleoside analogues, such as ribavirin and 5-fluorouracil, have been ineffective at inhibiting CoVs. This has been attributed to the proofreading activity of the viral 3'-5' exoribonuclease (ExoN). ß-d-N4-Hydroxycytidine (NHC) (EIDD-1931; Emory Institute for Drug Development) has recently been reported to inhibit multiple viruses. Here, we demonstrate that NHC inhibits both murine hepatitis virus (MHV) (50% effective concentration [EC50] = 0.17 µM) and Middle East respiratory syndrome CoV (MERS-CoV) (EC50 = 0.56 µM) with minimal cytotoxicity. NHC inhibited MHV lacking ExoN proofreading activity similarly to wild-type (WT) MHV, suggesting an ability to evade or overcome ExoN activity. NHC inhibited MHV only when added early during infection, decreased viral specific infectivity, and increased the number and proportion of G:A and C:U transition mutations present after a single infection. Low-level NHC resistance was difficult to achieve and was associated with multiple transition mutations across the genome in both MHV and MERS-CoV. These results point to a virus-mutagenic mechanism of NHC inhibition in CoVs and indicate a high genetic barrier to NHC resistance. Together, the data support further development of NHC for treatment of CoVs and suggest a novel mechanism of NHC interaction with the CoV replication complex that may shed light on critical aspects of replication.IMPORTANCE The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, ß-d-N4-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections.


Subject(s)
Antiviral Agents/pharmacology , Cytidine/analogs & derivatives , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/genetics , Murine hepatitis virus/drug effects , Murine hepatitis virus/genetics , Animals , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Coronaviridae Infections/drug therapy , Coronaviridae Infections/virology , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cytidine/pharmacology , Drug Resistance, Viral , Exoribonucleases/metabolism , Mice , Middle East Respiratory Syndrome Coronavirus/metabolism , Murine hepatitis virus/metabolism , Mutagenesis , RNA-Dependent RNA Polymerase/metabolism , Vero Cells , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
2.
Proc Natl Acad Sci U S A ; 114(35): E7348-E7357, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28807998

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus that since its emergence in 2012 has caused outbreaks in human populations with case-fatality rates of ∼36%. As in other coronaviruses, the spike (S) glycoprotein of MERS-CoV mediates receptor recognition and membrane fusion and is the primary target of the humoral immune response during infection. Here we use structure-based design to develop a generalizable strategy for retaining coronavirus S proteins in the antigenically optimal prefusion conformation and demonstrate that our engineered immunogen is able to elicit high neutralizing antibody titers against MERS-CoV. We also determined high-resolution structures of the trimeric MERS-CoV S ectodomain in complex with G4, a stem-directed neutralizing antibody. The structures reveal that G4 recognizes a glycosylated loop that is variable among coronaviruses and they define four conformational states of the trimer wherein each receptor-binding domain is either tightly packed at the membrane-distal apex or rotated into a receptor-accessible conformation. Our studies suggest a potential mechanism for fusion initiation through sequential receptor-binding events and provide a foundation for the structure-based design of coronavirus vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/immunology , Coronaviridae/immunology , Coronavirus Infections/virology , Crystallography, X-Ray/methods , Humans , Immunity, Humoral/immunology , Immunoglobulin G/metabolism , Mice, Inbred BALB C , Middle East Respiratory Syndrome Coronavirus/immunology , Protein Binding , Protein Conformation , Receptors, Virus/metabolism , Structure-Activity Relationship , Vaccination , Viral Vaccines/immunology
3.
Am J Physiol Renal Physiol ; 313(4): F1050-F1059, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28701314

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common monogenic hereditary disorders in humans characterized by fluid-filled cysts, primarily in the kidneys. Cux1, a cell cycle regulatory gene highly expressed during kidney development, is elevated in the cyst-lining cells of Pkd1 mutant mice, and in human ADPKD cells. However, forced expression of Cux1 is insufficient to induce cystic disease in transgenic mice or to induce rapid cyst formation after cilia disruption in the kidneys of adult mice. Here we report a double mutant mouse model that has a conditional deletion of the Pkd1 gene in the renal collecting ducts together with a targeted mutation in the Cux1 gene (Pkd1CD;Cux1tm2Ejn). While kidneys isolated from newborn Pkd1CD mice exhibit cortical and medullary cysts, kidneys isolated from newborn Pkd1CD;Cux1tm2Ejn-/- mice did not show any cysts. Because Cux1tm2Ejn-/- are perinatal lethal, we evaluated Pkd1CD mice that were heterozygote for the Cux1 mutation. Similar to the newborn Pkd1CD;Cux1tm2Ejn-/- mice, newborn Pkd1CD;Cux1tm2Ejn+/- mice did not show any cysts. Comparison of Pkd1CD and Pkd1CD;Cux1tm2Ejn+/- mice at later stages of development showed a reduction in the severity of PKD in the Pkd1CD;Cux1tm2Ejn+/- mice. Moreover, we observed an increase in expression of the cyclin kinase inhibitor p27, a target of Cux1 repression, in the rescued collecting ducts. Taken together, our results suggest that Cux1 expression in PKD is not directly involved in cystogenesis but promotes cell proliferation required for expansion of existing cysts, primarily by repression of p27.


Subject(s)
Cell Proliferation , Homeodomain Proteins/metabolism , Kidney Tubules, Collecting/metabolism , Nuclear Proteins/metabolism , Polycystic Kidney, Autosomal Dominant/metabolism , Repressor Proteins/metabolism , Age Factors , Animals , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Disease Models, Animal , Disease Progression , Genetic Predisposition to Disease , Homeodomain Proteins/genetics , Kidney Tubules, Collecting/pathology , Mice, Knockout , Mutation , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Phenotype , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/prevention & control , Repressor Proteins/deficiency , Repressor Proteins/genetics , Severity of Illness Index , Signal Transduction , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
4.
mBio ; 9(2)2018 03 06.
Article in English | MEDLINE | ID: mdl-29511076

ABSTRACT

Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC50) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC50 The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs.IMPORTANCE Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group ß-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.


Subject(s)
Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Coronavirus/drug effects , Coronavirus/enzymology , Exoribonucleases/metabolism , Ribonucleotides/pharmacology , Severe acute respiratory syndrome-related coronavirus/drug effects , Adenosine Monophosphate/analogs & derivatives , Alanine/pharmacology , Animals , Exoribonucleases/chemistry , Exoribonucleases/genetics , Mice , Mutation/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Virus Replication/drug effects , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL