Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 22(10): 1245-1255, 2021 10.
Article in English | MEDLINE | ID: mdl-34556884

ABSTRACT

Innate lymphoid cells (ILCs) are guardians of mucosal immunity, yet the transcriptional networks that support their function remain poorly understood. We used inducible combinatorial deletion of key transcription factors (TFs) required for ILC development (RORγt, RORα and T-bet) to determine their necessity in maintaining ILC3 identity and function. Both RORγt and RORα were required to preserve optimum effector functions; however, RORα was sufficient to support robust interleukin-22 production among the lymphoid tissue inducer (LTi)-like ILC3 subset, but not natural cytotoxicity receptor (NCR)+ ILC3s. Lymphoid tissue inducer-like ILC3s persisted with only selective loss of phenotype and effector functions even after the loss of both TFs. In contrast, continued RORγt expression was essential to restrain transcriptional networks associated with type 1 immunity within NCR+ ILC3s, which coexpress T-bet. Full differentiation to an ILC1-like population required the additional loss of RORα. Together, these data demonstrate how TF networks integrate within mature ILCs after development to sustain effector functions, imprint phenotype and restrict alternative differentiation programs.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Animals , Cell Differentiation/immunology , Cell Lineage/immunology , Cells, Cultured , Female , Gene Expression Regulation/immunology , Immunity, Mucosal/immunology , Lymphoid Tissue/immunology , Male , Mice , Mice, Inbred C57BL , Natural Cytotoxicity Triggering Receptor 1/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , T-Box Domain Proteins/immunology , Transcription Factors/immunology
2.
Immunity ; 57(7): 1586-1602.e10, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38897202

ABSTRACT

The tissues are the site of many important immunological reactions, yet how the immune system is controlled at these sites remains opaque. Recent studies have identified Foxp3+ regulatory T (Treg) cells in non-lymphoid tissues with unique characteristics compared with lymphoid Treg cells. However, tissue Treg cells have not been considered holistically across tissues. Here, we performed a systematic analysis of the Treg cell population residing in non-lymphoid organs throughout the body, revealing shared phenotypes, transient residency, and common molecular dependencies. Tissue Treg cells from different non-lymphoid organs shared T cell receptor (TCR) sequences, with functional capacity to drive multi-tissue Treg cell entry and were tissue-agnostic on tissue homing. Together, these results demonstrate that the tissue-resident Treg cell pool in most non-lymphoid organs, other than the gut, is largely constituted by broadly self-reactive Treg cells, characterized by transient multi-tissue migration. This work suggests common regulatory mechanisms may allow pan-tissue Treg cells to safeguard homeostasis across the body.


Subject(s)
Cell Movement , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Animals , Mice , Cell Movement/immunology , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Forkhead Transcription Factors/metabolism , Organ Specificity/immunology , Homeostasis/immunology
3.
Genes Dev ; 38(3-4): 131-150, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38453481

ABSTRACT

Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a Padi6 missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of Padi6 mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from Padi6 mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.


Subject(s)
Oocytes , Zygote , Animals , Child , Female , Humans , Mice , CCAAT-Enhancer-Binding Proteins/genetics , Cytoplasm/genetics , Cytoplasm/metabolism , DNA Methylation/genetics , Embryonic Development/genetics , Genomic Imprinting/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Nat Immunol ; 16(4): 415-25, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25706746

ABSTRACT

Post-transcriptional regulation of mRNA by the RNA-binding protein HuR (encoded by Elavl1) is required in B cells for the germinal center reaction and for the production of class-switched antibodies in response to thymus-independent antigens. Transcriptome-wide examination of RNA isoforms and their abundance and translation in HuR-deficient B cells, together with direct measurements of HuR-RNA interactions, revealed that HuR-dependent splicing of mRNA affected hundreds of transcripts, including that encoding dihydrolipoamide S-succinyltransferase (Dlst), a subunit of the 2-oxoglutarate dehydrogenase (α-KGDH) complex. In the absence of HuR, defective mitochondrial metabolism resulted in large amounts of reactive oxygen species and B cell death. Our study shows how post-transcriptional processes control the balance of energy metabolism required for the proliferation and differentiation of B cells.


Subject(s)
B-Lymphocytes/immunology , ELAV Proteins/immunology , Germinal Center/immunology , Immunity, Humoral , Immunoglobulins/biosynthesis , RNA, Messenger/immunology , Acyltransferases/genetics , Acyltransferases/immunology , Alternative Splicing/immunology , Animals , Antigens/administration & dosage , Antigens/immunology , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , Cell Death , Cell Differentiation , Cell Proliferation , ELAV Proteins/genetics , Erythrocytes/immunology , Germinal Center/cytology , Germinal Center/drug effects , Immunization , Immunoglobulin Class Switching , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/genetics , Mitochondria/immunology , RNA, Messenger/genetics , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Sheep
5.
J Cell Sci ; 137(14)2024 07 15.
Article in English | MEDLINE | ID: mdl-38904097

ABSTRACT

PTPRK is a receptor tyrosine phosphatase that is linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. PTPRK regulates cell-cell adhesion but is also reported to regulate numerous cancer-associated signalling pathways. However, the signalling mechanism of PTPRK remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.


Subject(s)
Epithelial-Mesenchymal Transition , Humans , Animals , Mice , ErbB Receptors/metabolism , ErbB Receptors/genetics , Signal Transduction , Cell Adhesion/genetics , Cell Movement , Cell Line, Tumor , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colitis/pathology , Colitis/metabolism , Colitis/genetics , Colitis/chemically induced , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Intestines/pathology
6.
Genome Res ; 33(1): 18-31, 2023 01.
Article in English | MEDLINE | ID: mdl-36690445

ABSTRACT

EHMT1 (also known as GLP) is a multifunctional protein, best known for its role as an H3K9me1 and H3K9me2 methyltransferase through its reportedly obligatory dimerization with EHMT2 (also known as G9A). Here, we investigated the role of EHMT1 in the oocyte in comparison to EHMT2 using oocyte-specific conditional knockout mouse models (Ehmt2 cKO, Ehmt1 cKO, Ehmt1/2 cDKO), with ablation from the early phase of oocyte growth. Loss of EHMT1 in Ehmt1 cKO and Ehmt1/2 cDKO oocytes recapitulated meiotic defects observed in the Ehmt2 cKO; however, there was a significant impairment in oocyte maturation and developmental competence in Ehmt1 cKO and Ehmt1/2 cDKO oocytes beyond that observed in the Ehmt2 cKO. Consequently, loss of EHMT1 in oogenesis results, upon fertilization, in mid-gestation embryonic lethality. To identify H3K9 methylation and other meaningful biological changes in each mutant to explore the molecular functions of EHMT1 and EHMT2, we performed immunofluorescence imaging, multi-omics sequencing, and mass spectrometry (MS)-based proteome analyses in cKO oocytes. Although H3K9me1 was depleted only upon loss of EHMT1, H3K9me2 was decreased, and H3K9me2-enriched domains were eliminated equally upon loss of EHMT1 or EHMT2. Furthermore, there were more significant changes in the transcriptome, DNA methylome, and proteome in Ehmt1/2 cDKO than Ehmt2 cKO oocytes, with transcriptional derepression leading to increased protein abundance and local changes in genic DNA methylation in Ehmt1/2 cDKO oocytes. Together, our findings suggest that EHMT1 contributes to local transcriptional repression in the oocyte, partially independent of EHMT2, and is critical for oogenesis and oocyte developmental competence.


Subject(s)
Multiomics , Proteome , Animals , Mice , Proteome/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Oogenesis/genetics , Oocytes/metabolism
7.
Nat Methods ; 20(2): 193-204, 2023 02.
Article in English | MEDLINE | ID: mdl-36543939

ABSTRACT

Progress in mass spectrometry lipidomics has led to a rapid proliferation of studies across biology and biomedicine. These generate extremely large raw datasets requiring sophisticated solutions to support automated data processing. To address this, numerous software tools have been developed and tailored for specific tasks. However, for researchers, deciding which approach best suits their application relies on ad hoc testing, which is inefficient and time consuming. Here we first review the data processing pipeline, summarizing the scope of available tools. Next, to support researchers, LIPID MAPS provides an interactive online portal listing open-access tools with a graphical user interface. This guides users towards appropriate solutions within major areas in data processing, including (1) lipid-oriented databases, (2) mass spectrometry data repositories, (3) analysis of targeted lipidomics datasets, (4) lipid identification and (5) quantification from untargeted lipidomics datasets, (6) statistical analysis and visualization, and (7) data integration solutions. Detailed descriptions of functions and requirements are provided to guide customized data analysis workflows.


Subject(s)
Computational Biology , Lipidomics , Computational Biology/methods , Software , Informatics , Lipids/chemistry
8.
Nature ; 583(7816): 447-452, 2020 07.
Article in English | MEDLINE | ID: mdl-32499651

ABSTRACT

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers1. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.52-7 contains a distal enhancer that is functional in CD4+ regulatory T (Treg) cells and required for Treg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3+ Treg cells, which are unable to control colitis in a cell-transfer model of the disease. In human Treg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Subject(s)
Chromosomes, Human, Pair 11/genetics , Colitis/genetics , Colitis/immunology , Enhancer Elements, Genetic/genetics , Genetic Predisposition to Disease/genetics , T-Lymphocytes, Regulatory/immunology , Acetylation , Alleles , Animals , Chromosomes, Mammalian/genetics , Female , Forkhead Transcription Factors/metabolism , Histones/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Synteny/genetics
9.
Nucleic Acids Res ; 52(D1): D1677-D1682, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37855672

ABSTRACT

LIPID MAPS (LIPID Metabolites and Pathways Strategy), www.lipidmaps.org, provides a systematic and standardized approach to organizing lipid structural and biochemical data. Founded 20 years ago, the LIPID MAPS nomenclature and classification has become the accepted community standard. LIPID MAPS provides databases for cataloging and identifying lipids at varying levels of characterization in addition to numerous software tools and educational resources, and became an ELIXIR-UK data resource in 2020. This paper describes the expansion of existing databases in LIPID MAPS, including richer metadata with literature provenance, taxonomic data and improved interoperability to facilitate FAIR compliance. A joint project funded by ELIXIR-UK, in collaboration with WikiPathways, curates and hosts pathway data, and annotates lipids in the context of their biochemical pathways. Updated features of the search infrastructure are described along with implementation of programmatic access via API and SPARQL. New lipid-specific databases have been developed and provision of lipidomics tools to the community has been updated. Training and engagement have been expanded with webinars, podcasts and an online training school.


Subject(s)
Databases, Factual , Lipidomics , Lipids , Lipid Metabolism , Lipids/chemistry , Software
10.
Mol Cell Proteomics ; 22(2): 100485, 2023 02.
Article in English | MEDLINE | ID: mdl-36549590

ABSTRACT

The molecular chaperone heat shock protein 90 (HSP90) works in concert with co-chaperones to stabilize its client proteins, which include multiple drivers of oncogenesis and malignant progression. Pharmacologic inhibitors of HSP90 have been observed to exert a wide range of effects on the proteome, including depletion of client proteins, induction of heat shock proteins, dissociation of co-chaperones from HSP90, disruption of client protein signaling networks, and recruitment of the protein ubiquitylation and degradation machinery-suggesting widespread remodeling of cellular protein complexes. However, proteomics studies to date have focused on inhibitor-induced changes in total protein levels, often overlooking protein complex alterations. Here, we use size-exclusion chromatography in combination with mass spectrometry (SEC-MS) to characterize the early changes in native protein complexes following treatment with the HSP90 inhibitor tanespimycin (17-AAG) for 8 h in the HT29 colon adenocarcinoma cell line. After confirming the signature cellular response to HSP90 inhibition (e.g., induction of heat shock proteins, decreased total levels of client proteins), we were surprised to find only modest perturbations to the global distribution of protein elution profiles in inhibitor-treated HT29 cells at this relatively early time-point. Similarly, co-chaperones that co-eluted with HSP90 displayed no clear difference between control and treated conditions. However, two distinct analysis strategies identified multiple inhibitor-induced changes, including known and unknown components of the HSP90-dependent proteome. We validate two of these-the actin-binding protein Anillin and the mitochondrial isocitrate dehydrogenase 3 complex-as novel HSP90 inhibitor-modulated proteins. We present this dataset as a resource for the HSP90, proteostasis, and cancer communities (https://www.bioinformatics.babraham.ac.uk/shiny/HSP90/SEC-MS/), laying the groundwork for future mechanistic and therapeutic studies related to HSP90 pharmacology. Data are available via ProteomeXchange with identifier PXD033459.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Colonic Neoplasms , Humans , Proteome/metabolism , Adenocarcinoma/drug therapy , Colonic Neoplasms/drug therapy , HSP90 Heat-Shock Proteins , Molecular Chaperones , Antineoplastic Agents/pharmacology , Mass Spectrometry , Chromatography, Gel
11.
Environ Microbiol ; 26(4): e16604, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561900

ABSTRACT

Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found Pseudomonas fluorescens PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (Myzus persicae). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host-pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent.


Subject(s)
Aphids , Insecticides , Pseudomonas fluorescens , Animals , Aphids/genetics , Pseudomonas fluorescens/genetics , Peptide Hydrolases , Insecticides/pharmacology , Gene Expression Profiling
12.
Nutr Res Rev ; : 1-9, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38586996

ABSTRACT

Iron is essential for many physiological functions of the body, and it is required for normal growth and development. Iron deficiency (ID) is the most common form of micronutrient malnutrition and is particularly prevalent in infants and young children in developing countries. Iron supplementation is considered the most effective strategy to combat the risk of ID and ID anaemia (IDA) in infants, although iron supplements cause a range of deleterious gut-related problems in malnourished children. The purpose of this review is to assess the available evidence on the effect of iron supplementation on the gut microbiota during childhood ID and to further assess whether prebiotics offer any benefits for iron supplementation. Prebiotics are well known to improve gut-microbial health in children, and recent reports indicate that prebiotics can mitigate the adverse gut-related effects of iron supplementation in children with ID and IDA. Thus, provision of prebiotics alongside iron supplements has the potential for an enhanced strategy for combatting ID and IDA among children in the developing world. However, further understanding is required before the benefit of such combined treatments of ID in nutritionally deprived children across populations can be fully confirmed. Such enhanced understanding is of high relevance in resource-poor countries where ID, poor sanitation and hygiene, alongside inadequate access to good drinking water and poor health systems, are serious public health concerns.

13.
Nucleic Acids Res ; 50(4): 1993-2004, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35137160

ABSTRACT

Histone 3 lysine 4 trimethylation (H3K4me3) is an epigenetic mark found at gene promoters and CpG islands. H3K4me3 is essential for mammalian development, yet mechanisms underlying its genomic targeting are poorly understood. H3K4me3 methyltransferases SETD1B and MLL2 (KMT2B) are essential for oogenesis. We investigated changes in H3K4me3 in Setd1b conditional knockout (cKO) oocytes using ultra-low input ChIP-seq, with comparisons to DNA methylation and gene expression analyses. H3K4me3 was redistributed in Setd1b cKO oocytes showing losses at active gene promoters associated with downregulated gene expression. Remarkably, many regions also gained H3K4me3, in particular those that were DNA hypomethylated, transcriptionally inactive and CpG-rich, which are hallmarks of MLL2 targets. Consequently, loss of SETD1B disrupts the balance between MLL2 and de novo DNA methyltransferases in determining the epigenetic landscape during oogenesis. Our work reveals two distinct, complementary mechanisms of genomic targeting of H3K4me3 in oogenesis, with SETD1B linked to gene expression and MLL2 to CpG content.


Subject(s)
Histones , Lysine , Animals , CpG Islands/genetics , DNA Methylation , Histone Methyltransferases/genetics , Histones/genetics , Histones/metabolism , Lysine/metabolism , Mammals/genetics , Oogenesis/genetics
14.
Angew Chem Int Ed Engl ; 63(16): e202401379, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38407997

ABSTRACT

Ferritins are multimeric cage-forming proteins that play a crucial role in cellular iron homeostasis. All H-chain-type ferritins harbour a diiron site, the ferroxidase centre, at the centre of a 4 α-helical bundle, but bacterioferritins are unique in also binding 12 hemes per 24 meric assembly. The ferroxidase centre is known to be required for the rapid oxidation of Fe2+ during deposition of an immobilised ferric mineral core within the protein's hollow interior. In contrast, the heme of bacterioferritin is required for the efficient reduction of the mineral core during iron release, but has little effect on the rate of either oxidation or mineralisation of iron. Thus, the current view is that these two cofactors function in iron uptake and release, respectively, with no functional overlap. However, rapid electron transfer between the heme and ferroxidase centre of bacterioferritin from Escherichia coli was recently demonstrated, suggesting that the two cofactors may be functionally connected. Here we report absorbance and (magnetic) circular dichroism spectroscopies, together with in vitro assays of iron-release kinetics, which demonstrate that the ferroxidase centre plays an important role in the reductive mobilisation of the bacterioferritin mineral core, which is dependent on the heme-ferroxidase centre electron transfer pathway.


Subject(s)
Ceruloplasmin , Iron , Iron/chemistry , Ceruloplasmin/chemistry , Escherichia coli/metabolism , Ferritins/chemistry , Bacterial Proteins/metabolism , Cytochrome b Group/chemistry , Minerals , Oxidation-Reduction , Heme/metabolism
15.
Microbiology (Reading) ; 169(3)2023 03.
Article in English | MEDLINE | ID: mdl-36947574

ABSTRACT

Staphylococcus aureus is a common colonizer of the human gut and in doing so it must be able to resist the actions of the host's innate defences. Bile salts are a class of molecules that possess potent antibacterial activity that control growth. Bacteria that colonize and survive in that niche must be able to resist the action of bile salts, but the mechanisms by which S. aureus does so are poorly understood. Here we show that FadB is a bile-induced oxidoreductase which mediates bile salt resistance and when heterologously expressed in Escherichia coli renders them resistant. Deletion of fadB attenuated survival of S. aureus in a model of the human distal colon.


Subject(s)
Cholates , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Bile Acids and Salts/pharmacology , Oxidoreductases
16.
Biochem Soc Trans ; 51(4): 1545-1558, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37503670

ABSTRACT

Norbin (Neurochondrin, NCDN) is a highly conserved 79 kDa adaptor protein that was first identified more than a quarter of a century ago as a gene up-regulated in rat hippocampus upon induction of long-term potentiation. Most research has focussed on the role of Norbin in the nervous system, where the protein is highly expressed. Norbin regulates neuronal morphology and synaptic plasticity, and is essential for normal brain development and homeostasis. Dysregulation of Norbin is linked to a variety of neurological conditions. Recently, Norbin was shown to be expressed in myeloid cells as well as neurons. Myeloid-cell specific deletion revealed an important role of Norbin as a suppressor of neutrophil-derived innate immunity. Norbin limits the ability of neutrophils to clear bacterial infections by curbing the responsiveness of these cells to inflammatory and infectious stimuli. Mechanistically, Norbin regulates cell responses through binding to its interactors, in particular to a wide range of G protein-coupled receptors (GPCRs). Norbin association with GPCRs controls GPCR trafficking and signalling. Other important Norbin interactors are the Rac guanine-nucleotide exchange factor P-Rex1 and protein kinase A. Downstream signalling pathways regulated by Norbin include ERK, Ca2+ and the small GTPase Rac. Here, we review the current understanding of Norbin structure, expression and its roles in health and disease. We also explore Norbin signalling through its interactors, with a particular focus on GPCR trafficking and signalling. Finally, we discuss avenues that could be pursued in the future to increase our understanding of Norbin biology.


Subject(s)
Neuropeptides , Rats , Animals , Neuropeptides/metabolism , Signal Transduction , Receptors, G-Protein-Coupled/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism
17.
Development ; 146(24)2019 12 13.
Article in English | MEDLINE | ID: mdl-31767620

ABSTRACT

The murine developing epicardium heterogeneously expresses the transcription factors TCF21 and WT1. Here, we show that this cell heterogeneity is conserved in human epicardium, regulated by BNC1 and associated with cell fate and function. Single cell RNA sequencing of epicardium derived from human pluripotent stem cells (hPSC-epi) revealed that distinct epicardial subpopulations are defined by high levels of expression for the transcription factors BNC1 or TCF21. WT1+ cells are included in the BNC1+ population, which was confirmed in human foetal hearts. THY1 emerged as a membrane marker of the TCF21 population. We show that THY1+ cells can differentiate into cardiac fibroblasts (CFs) and smooth muscle cells (SMCs), whereas THY1- cells were predominantly restricted to SMCs. Knocking down BNC1 during the establishment of the epicardial populations resulted in a homogeneous, predominantly TCF21high population. Network inference methods using transcriptomic data from the different cell lineages derived from the hPSC-epi delivered a core transcriptional network organised around WT1, TCF21 and BNC1. This study unveils a list of epicardial regulators and is a step towards engineering subpopulations of epicardial cells with selective biological activities.


Subject(s)
Cell Lineage/genetics , DNA-Binding Proteins/physiology , Pericardium/cytology , Pluripotent Stem Cells/physiology , Transcription Factors/physiology , Cell Differentiation/genetics , Cells, Cultured , Female , Fibroblasts/cytology , Fibroblasts/physiology , Humans , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/physiology , Pericardium/metabolism , Pluripotent Stem Cells/cytology , Pregnancy , Primary Cell Culture , Totipotent Stem Cells/cytology , Totipotent Stem Cells/physiology
18.
Bioinformatics ; 37(10): 1478-1479, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33027502

ABSTRACT

SUMMARY: We present LipidFinder 2.0, incorporating four new modules that apply artefact filters, remove lipid and contaminant stacks, in-source fragments and salt clusters, and a new isotope deletion method which is significantly more sensitive than available open-access alternatives. We also incorporate a novel false discovery rate method, utilizing a target-decoy strategy, which allows users to assess data quality. A renewed lipid profiling method is introduced which searches three different databases from LIPID MAPS and returns bulk lipid structures only, and a lipid category scatter plot with color blind friendly pallet. An API interface with XCMS Online is made available on LipidFinder's online version. We show using real data that LipidFinder 2.0 provides a significant improvement over non-lipid metabolite filtering and lipid profiling, compared to available tools. AVAILABILITY AND IMPLEMENTATION: LipidFinder 2.0 is freely available at https://github.com/ODonnell-Lipidomics/LipidFinder and http://lipidmaps.org/resources/tools/lipidfinder. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Lipidomics , Software , Databases, Factual , Lipids
19.
Nat Immunol ; 11(8): 717-24, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20622884

ABSTRACT

ZFP36L1 and ZFP36L2 are RNA-binding proteins (RBPs) that interact with AU-rich elements in the 3' untranslated region of mRNA, which leads to mRNA degradation and translational repression. Here we show that mice that lacked ZFP36L1 and ZFP36L2 during thymopoiesis developed a T cell acute lymphoblastic leukemia (T-ALL) dependent on the oncogenic transcription factor Notch1. Before the onset of T-ALL, thymic development was perturbed, with accumulation of cells that had passed through the beta-selection checkpoint without first expressing the T cell antigen receptor beta-chain (TCRbeta). Notch1 expression was higher in untransformed thymocytes in the absence of ZFP36L1 and ZFP36L2. Both RBPs interacted with evolutionarily conserved AU-rich elements in the 3' untranslated region of Notch1 and suppressed its expression. Our data establish a role for ZFP36L1 and ZFP36L2 during thymocyte development and in the prevention of malignant transformation.


Subject(s)
Nuclear Proteins/deficiency , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology , Tristetraprolin/deficiency , Amino Acid Sequence , Animals , Butyrate Response Factor 1 , Conserved Sequence , Humans , Immunophenotyping , Kaplan-Meier Estimate , Mice , Mice, Knockout , Molecular Sequence Data , Nuclear Proteins/genetics , Nuclear Proteins/immunology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Receptor, Notch1/genetics , Receptor, Notch1/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Sequence Alignment , Thymus Gland/growth & development , Transcription, Genetic , Tristetraprolin/genetics , Tristetraprolin/immunology
20.
Analyst ; 147(15): 3558-3569, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35801578

ABSTRACT

Antibiotic resistance is a major global challenge. Although microfluidic antibiotic susceptibility tests (AST) offer great potential for rapid and portable testing to inform correct antibiotic selection, the impact of miniaturisation on broth microdilution (BMD) is not fully understood. We developed a 10-plex microcapillary based broth microdilution using resazurin as a colorimetric indicator for bacterial growth. Each capillary had a 1 microlitre capillary volume, 100 times smaller than microplate broth microdilution. The microcapillary BMD was compared to an in-house standard microplate AST and commercial Vitek 2 system. When tested with 25 uropathogenic isolates (20 Escherichia coli and 5 Klebsiella pneumoniae) and 2 reference E. coli, these devices gave 96.1% (441/459 isolate/antibiotic combinations) categorical agreement, across 17 therapeutically beneficial antibiotics, compared to in-house microplate BMD with resazurin. A further 99 (50 E. coli and 49 K. pneumoniae) clinical isolates were tested against 10 antibiotics and showed 92.3% categorical agreement (914/990 isolate/antibiotic combinations) compared to the Vitek 2 measurements. These microcapillary tests showed excellent analytical agreement with existing AST methods. Furthermore, the small size and simple colour change can be recorded using a smartphone camera or it is feasible to follow growth kinetics using very simple, low-cost readers. The test strips used here are produced in large batches, allowing hundreds of multiplex tests to be made and tested rapidly. Demonstrating performance of miniaturised broth microdilution with clinical isolates paves the way for wider use of microfluidic AST.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL