Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Malar J ; 16(1): 21, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28069024

ABSTRACT

BACKGROUND: The changing malaria situation in Madagascar requires additional knowledge on the physiology and behaviour of local mosquito vectors. However, the absence of established colonies for several anopheline species present in Madagascar constitutes a limiting factor. To avoid labour intensive work and uncertainty for success of establishing Anopheles colonies from Malagasy species, field collections of blood-fed females and in-tube forced oviposition were combined to reliably produce large numbers of F1 progeny. METHODS: Blood-fed females were captured in zebu stables or open zebu parks. Oviposition was induced by enclosing gravid females in eppendorf tubes as initially described for Anopheles funestus. The effect of cold anaesthesia on inducing in-tube forced oviposition and on egg yield was assessed for five Anopheles species, namely Anopheles coustani, An. funestus, Anopheles mascarensis, Anopheles arabiensis and Anopheles squamosus. The production of eggs from in-tube forced oviposition and standard egg laying in cages was compared. RESULTS: For the five anopheline species studied, the in-tube forced oviposition method had different efficacy ranging from 35.6 to 71.1% females willing to lay eggs in tubes. Interestingly, prior anaesthesia increased significantly the proportion of ovipositing females for An. mascarensis. Prior anaesthesia has a marginal effect on the number of eggs produced. However, the overall yield in eggs collected using the in-tube forced oviposition method largely exceeds the number of eggs that can be produced by females free to oviposit in cages. CONCLUSION: The efficiency of the method allowed the production of F1 progeny in numbers sufficiently large for developing detailed analyses of the five species tested, including behavioural studies, insecticide resistance assessment and molecular characterization, as well as vector competence studies. It should be applicable to other anopheline species difficult to colonize.


Subject(s)
Anopheles/growth & development , Entomology/methods , Mosquito Vectors/growth & development , Animals , Cattle , Female , Housing, Animal , Madagascar
2.
Malar J ; 13: 21, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24423246

ABSTRACT

BACKGROUND: In Madagascar, indoor residual spraying (IRS) with insecticide was part of the national malaria control programme since the middle of the twentieth century. It was mainly employed in the highlands and the foothill areas, which are prone to malaria epidemics. Prior to a policy change foreseeing a shift from DDT to pyrethroids, a study was carried out to assess the entomological and parasitological impacts of IRS in areas with DDT or pyrethroids and in areas without IRS. METHODS: The study was carried out from October 2002 to February 2005 in three communes of the western foothill area of Madagascar. Two communes received IRS with DDT in February 2003, then IRS with pyrethroids (alphacypermethrin or deltamethrin) in February 2004. The third commune remained untreated. Mosquitoes were collected at night using human landing catches and early in the morning in resting places. Blood smears were obtained from schoolchildren and microscopically examined for Plasmodium presence. RESULTS: In total, 18,168 human landing mosquitoes and 12,932 resting anophelines were collected. The Anopheles species caught comprised 10 species. The main and most abundant malaria vector was Anopheles funestus (72.3% of human-seeking malaria vectors caught indoors). After IRS had taken place, this species exhibited a lower human biting rate and a lower sporozoite index. Overall, 5,174 blood smears were examined with a mean plasmodic index of 19.9%. A total of four Plasmodium species were detected. Amongst tested school children the highest plasmodial index was 54.6% in the untreated commune, compared to 19.9% in the commune sprayed with DDT and 11.9% in the commune sprayed with pyrethroid. The highest prevalence of clinical malaria attacks in children present at school the day of the survey was 33% in the untreated commune compared to 8% in the areas which received IRS. CONCLUSION: In terms of public health, the present study shows (1) a high efficacy of IRS with insecticide, (2) a similar efficacy of DDT and pyrethroid and (3) a similar efficacy of alphacypermethrin and deltamethrin. The use of IRS with DDT and pyrethroid greatly decreased the vector-human contact, with an associated decrease of the plasmodial index. However malaria transmission did not reach zero, probably due to the exophilic host-seeking and resting behaviours of the malaria vectors, thus avoiding contact with insecticide-treated surfaces indoors. The study highlights the strengths and weaknesses of the IRS implementation and the need for complementary tools for an optimal vector control in Madagascar.


Subject(s)
Anopheles , Insect Vectors , Insecticides , Malaria/prevention & control , Mosquito Control/methods , Animals , Anopheles/microbiology , Child , DDT , Female , Housing , Humans , Insect Vectors/microbiology , Madagascar/epidemiology , Malaria/epidemiology , Malaria/transmission , Nitriles , Prevalence , Pyrethrins , Seasons
3.
J Med Entomol ; 50(3): 603-10, 2013 May.
Article in English | MEDLINE | ID: mdl-23802456

ABSTRACT

There were epidemic-epizootics of Rift Valley Fever (RVF) affecting humans and cattle in Madagascar in the district of Anjozorobe in 2008. Little is known about the role of Malagasy mosquitoes in the circulation of RVF virus. Therefore, we investigated the species diversity, dynamics and biology of potential RVF virus vectors in the rainforest, rainforest edge (village of Anorana), and savanna biotope (village of Antanifotsy) of this district between November 2008 and July 2010. We captured 56,605 adults of 35 different species. Anopheles squamosus (Theobald), Anopheles coustani (Laveran), Culex antennatus (Becker), Culex pipiens (L.), and Culex univittatus (Theobald) were the most abundant during the rainy season with Cx. pipiens the most abundant species in the rainforest (47%), and An. squamosus the most abundant species in the rainforest edge and in the savanna biotope (56%, 60%, respectively). Only Cx. univittatus was abundant in the dry season. The parous rate was > 60% throughout the rainy season for An. squamosus and it was > 50% from the middle to the end of the rainy season for Cx. pipiens. Two additional species have been found only at larval stage. Cattle were the most attractive bait for all species, followed by sheep and poultry. Human was the least attractive for all species. Most of the 163 bloodmeals tested were taken from cattle. Three were from poultry, one was from dog and one was a mixed bloodmeal taken from sheep and cattle. These results on vectorial capacity parameters may allow considering the involvement of mosquito transmission of the virus in the district of Anjozorobe during the recent epidemic-epizootic.


Subject(s)
Culicidae/physiology , Culicidae/virology , Insect Vectors/physiology , Insect Vectors/virology , Rift Valley Fever/transmission , Rift Valley fever virus/physiology , Animals , Biota , Culicidae/classification , Environment , Feeding Behavior , Humans , Insect Vectors/classification , Madagascar/epidemiology , Population Density , Reproduction , Rift Valley Fever/epidemiology , Seasons , Species Specificity
4.
Int J Parasitol ; 36(12): 1273-81, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16842796

ABSTRACT

Malaria transmission remains poorly documented in areas of low transmission. A study has been carried out over two consecutive years in Analamiranga, a village located at an altitude of 885m on the western edge of the Malagasy highlands, with the aim of generating and updating malariometric indexes for both mosquitoes and schoolchildren. In this village, no vector control measures were performed during the study period nor during previous decades. Mosquitoes were collected monthly when landing on human volunteers and in various resting-places. Blood samples were taken every 3 months from schoolchildren aged 6-12 years and microscopically examined. Of 7,480 mosquitoes collected on human subjects, 5,790 were anophelines. Ten anopheline species were represented and three of these, Anopheles funestus, Anopheles arabiensis and Anopheles mascarensis, accounted for 59.2% of the collection. Of these three species 4,640 were also collected in resting places. The proportion of mosquitoes fed on bovids was high; conversely, the anthropophilic rate (mosquitoes fed on human beings) was especially low: 31%, 7% and 1%, respectively, for A. funestus, A. arabiensis and A. mascarensis. The only confirmed malaria vector was A. funestus with a low sporozoite index (of 6,830 A. funestus, five were positive for Plasmodium falciparum and four for Plasmodium vivax). The annual entomological inoculation rate (number of bites of infected anophelines per adult person) was estimated at 2.49 with low variation over the 2 years. Overall, 909 thick blood smears were tested from blood samples taken from schoolchildren with 30.3% being malaria-positive. The four Plasmodium species infecting human subjects were detected in the following proportions: P. falciparum 78.9%, P. vivax 19.4%, Plasmodium malariae 1.0% and Plasmodium ovale 0.7%. The proportions of children who were infected with any Plasmodium ranged from 10.7% in February to 51.0% in September. Parasitemic children with fever (axillary temperature >37.5 degrees C) accounted for 16.4% of the children sampled. This study demonstrates that there are substantial parasitological consequences of even a relatively low entomological transmission and also recommends including exterior resting-places of mosquitoes in future spraying campaigns in the highlands of Madagascar.


Subject(s)
Malaria/epidemiology , Animals , Anopheles , Child , Female , Humans , Insect Vectors , Madagascar/epidemiology , Malaria/parasitology , Malaria/transmission , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Population Density , Prevalence , Rural Health , Seasons , Time Factors
5.
J Vector Ecol ; 37(2): 402-6, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23181865

ABSTRACT

In Madagascar, Anopheles gambiae has been found below altitudes of 1,000 m. We sampled An. gambiae sensu lato (sl) between 2008 and 2010 in the Central Highlands of Madagascar at altitudes over 1,200 m. The study site consists of rainforest, rainforest edge, and an open savanna biotope. Anopheles gambiae and An. arabiensis, as well as molecular forms of An. gambiae, were identified molecularly. An. gambiae accounted for 26.7% at the edge of the rainforest and 2.3% in the open savanna biotope. One specimen of this species was caught in the forest. An. arabiensis accounted for 66.3% at the edge of the rainforest and 97.7 % in the open savanna biotope. All An. gambiae adults tested belonged to the S molecular form. An. gambiae is present at high altitudes in Madagascar, with a high prevalence at the rainforest edge. Several factors, including the appearance of new favorable biotopes, recolonization after a reduction of indoor vector control, and climate change, may contribute to its distribution. The changing distribution of An. gambiae may have consequences for the distribution and incidence of malaria in the Malagasy Highlands.


Subject(s)
Altitude , Anopheles/physiology , Animals , Insect Vectors/physiology , Madagascar
6.
Vector Borne Zoonotic Dis ; 11(6): 753-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21028960

ABSTRACT

Following veterinary alerts of Rift Valley fever (RVF) in the districts of Fianarantsoa I and II in November 2008 and in the district of Ambalavao in April 2009, entomological and virological investigations were carried out to identify the mosquito species that could act as RVF virus (RVFV) vectors in the region. A total of 12,785 adult mosquitoes belonging to 5 genera and 21 species were collected. After identification, mosquitoes were pooled by species, sex, and female status (fed or unfed) and then stored at -80°C. Of 319 pools of unfed monospecific female mosquito tested by real-time RT-polymerase chain reaction, RVFV was detected in 1 pool of Anopheles coustani, 5 pools of An. squamosus, and 2 pools of Culex antennatus mosquitoes. The virus was isolated in mosquito cell lines from two of the five Real Time-RT-polymerase chain reaction (real time-RT-PCR) positive pools of An. squamosus mosquitoes. From the eight RVFV strains detected, partial S, M, and L genome segments sequences were obtained. The phylogenetic analysis of these sequences showed that the strains circulating in mosquitoes were genetically close to those that circulated in livestock and humans during RVF outbreaks in 2008 and 2009. This study, therefore, provides strong evidence that An. squamosus, An. coustani, and Cx. antennatus could play a role as vectors of the RVFV during the disease outbreaks in 2008-2009. Bioecological, genetic, and RVF transmission studies on these three mosquito species are needed to address this question and thus improve prevention and control of future RVF outbreaks in Madagascar, where these species are present.


Subject(s)
Anopheles/virology , Culex/virology , Rift Valley fever virus/genetics , Rift Valley fever virus/isolation & purification , Animals , Female , Humans , Madagascar , Male , Phylogeny , RNA, Viral/genetics , RNA, Viral/isolation & purification , Species Specificity
7.
Acta Trop ; 116(3): 240-5, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20804715

ABSTRACT

Malaria remains a major public health problem in Madagascar, as it is the first cause of morbidity in health care facilities. Its transmission remains poorly documented. An entomological study was carried out over 1 year (October 2003-September 2004) in Saharevo, a village located at an altitude of 900m on the eastern edge of the Malagasy central highlands. Mosquitoes were sampled weekly upon landing on human volunteers and in various resting-places. Out of 5515 mosquitoes collected on humans, 3219 (58.4%) were anophelines. Eleven anopheline species were represented, among which Anopheles funestus, Anopheles gambiae, Anopheles arabiensis and Anopheles mascarensis. Out of 677 mosquitoes collected in bedrooms by pyrethrum spray catches and in Muirhead-Thomson pits, 656 (96.9%) were anopheline belonging to these four latter species. The proportion of mosquitoes that fed on human varied according to the resting-places and the mosquito species: 86% of An. funestus resting in bedrooms fed on humans, whereas only 16% of An. funestus and 0% of An. mascarensis resting in pits fed on humans. The proportion of anopheline mosquitoes infected with human Plasmodium was measured by circumsporozoite protein-ELISA: 10/633 An. funestus (1.58%), 1/211 An. gambiae s.l. (0.48%) and 2/268 An. mascarensis (0.75%). The annual entomological inoculation rate (number of bites of infected anophelines per adult) was estimated at 2.78. The transmission was mainly due to An. funestus and only observed in the second half of the rainy season, from February to May. These results are discussed in the context of the current malaria vector control policy in Madagascar.


Subject(s)
Biodiversity , Culicidae/growth & development , Culicidae/parasitology , Disease Vectors , Malaria/epidemiology , Malaria/transmission , Plasmodium/isolation & purification , Adult , Animals , Antigens, Protozoan/analysis , Culicidae/classification , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Madagascar/epidemiology , Plasmodium/chemistry , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL