Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Environ Res ; 228: 115906, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37062480

ABSTRACT

Wide-scale emergence of glyphosate-resistant weeds has led to an increase in the simultaneous application of herbicide mixtures exacerbated by the introduction of crops tolerant to glyphosate plus dicamba or glyphosate plus 2,4-D. This raises serious concerns regarding the environmental and health risks resulting from increased exposure to a mixture of herbicide active ingredients. We evaluated hepatotoxic effects following perinatal exposure to glyphosate alone or in combination with 2,4-D and dicamba from gestational day-6 until adulthood in Wistar rats. Animals were administered with glyphosate at the European Union (EU) acceptable daily intake (ADI; 0.5 mg/kg bw/day) and no-observed-adverse-effect level (NOAEL; 50 mg/kg bw/day). A mixture of glyphosate with 2,4-D (0.3 mg/kg bw/day) and dicamba (0.02 mg/kg bw/day) with each at their EU ADI was evaluated. Redox status was determined by measuring levels of reduced glutathione, decomposition rate of Η2Ο2, glutathione reductase, glutathione peroxidase, total antioxidant capacity, thiobarbituric reactive substances, and protein carbonyls. Gene expression analysis of Nr1d1, Nr1d2, Clec2g, Ier3, and Gadd45g associated with oxidative damage to DNA, was also performed. Analysis of liver samples showed that exposure to the mixture of the three herbicides induced a marked increase in the concentration of glutathione and malondialdehyde indicative of a disturbance in redox balance. Nevertheless, the effect of increased lipid peroxidation was not discernible following a 3-month recuperation period where animals were withdrawn from pesticide exposure post-weaning. Interestingly, toxic effects caused by prenatal exposure to the glyphosate NOAEL were present after the same 3-month recovery period. No statistically significant changes in the expression of genes linked with genotoxicity were observed. Our findings reinforce the importance of assessing the combined effects of chemical pollutants at doses that are asserted by regulatory agencies to be safe individually.


Subject(s)
Dicamba , Herbicides , Rats , Animals , Pregnancy , Female , Dicamba/chemistry , Dicamba/toxicity , Rats, Wistar , Herbicides/toxicity , Herbicides/chemistry , Oxidation-Reduction , 2,4-Dichlorophenoxyacetic Acid , Liver , Glyphosate
2.
Environ Res ; 237(Pt 1): 116908, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37597833

ABSTRACT

The increasing use of the herbicide mixture of glyphosate, dicamba and 2-4-D to deal with glyphosate-resistant weeds raises concerns regarding human health and environmental risks. This study aimed to evaluate the effects of developmental exposure to glyphosate and a herbicide mixture containing glyphosate, dicamba and 2-4-D on rat dams' kidney and thyroid function and offspring's health. Pregnant Wistar rats were exposed from day-6 of gestation till weaning to regulatory relevant doses of glyphosate corresponding to the European Union (EU) acceptable daily intake (ADI; 0.5 mg/kg bw/day), and the no-observed-adverse-effect level (NOAEL; 50 mg/kg bw/day), and to a mixture of glyphosate, dicamba and 2,4-D all at the EU ADI (0.5, 0.002 and 0.3 mg/kg bw/day) respectively. After weaning the dams were sacrificed and blood and organs were collected. The pups' health was assessed by measuring viability, gestational and anogenital indices. Perinatal exposure to GLY alone and the herbicide mixture resulted in anti-androgenic effects in male offspring. In dams, exposure to glyphosate resulted in kidney glomerular and tubular dysfunction as well as increased thyroid hormone levels in a dose-dependent manner. Furthermore, exposure to the herbicide mixture resulted in effects similar to those observed with glyphosate at the NOAEL, suggesting at least an additive effect of the herbicide mixture at doses individually considered safe for humans.

3.
Environ Health ; 21(1): 95, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36221133

ABSTRACT

BACKGROUND: Prenatal glyphosate (GLY) exposure is associated with adverse reproductive outcomes in animal studies. Little is known about the effects of GLY exposure during pregnancy in the human population. This study aims to establish baseline urine GLY levels in a high-risk and racially diverse pregnancy cohort and to assess the relationship between prenatal GLY exposure and fetal development and birth outcomes. METHODS: Random first trimester urine specimens were collected from high risk pregnant women between 2013 and 2016 as part of the Indiana Pregnancy Environmental Exposures Study (PEES). Demographic and clinical data were abstracted from mother and infant medical records. Urine glyphosate levels were measured as a proxy for GLY exposure and quantified using liquid chromatography-tandem mass spectrometry. Primary outcome variables included gestation-adjusted birth weight percentile (BWT%ile) and neonatal intensive care unit (NICU) admission. Relationships between primary outcome variables and GLY exposure were assessed using univariate and multivariate linear and logistic regression models. RESULTS: Urine GLY levels above the limit of detection (0.1 ng/mL) were found in 186 of 187 (99%) pregnant women. Further analyses were limited to 155 pregnant women with singleton live births. The mean age of participants was 29 years, and the majority were non-Hispanic white (70%) or non-Hispanic Black (21%). The mean (± SD) urine GLY level was 3.33 ± 1.67 ng/mL. Newborn BWT%iles were negatively related to GLY (adjusted slope ± SE = -0.032 + 0.014, p = 0.023). Infants born to women living outside of Indiana's large central metropolitan area were more likely to have a lower BWT%ile associated with mother's first trimester GLY levels (slope ± SE = -0.064 ± 0.024, p = 0.007). The adjusted odds ratio for NICU admission and maternal GLY levels was 1.16 (95% CI: 0.90, 1.67, p = 0.233). CONCLUSION: GLY was found in 99% of pregnant women in this Midwestern cohort. Higher maternal GLY levels in the first trimester were associated with lower BWT%iles and higher NICU admission risk. The results warrant further investigation on the effects of GLY exposure in human pregnancies in larger population studies.


Subject(s)
Fetal Development , Pregnancy, High-Risk , Adult , Female , Glycine/adverse effects , Glycine/analogs & derivatives , Humans , Infant , Infant, Newborn , Pregnancy , Prospective Studies , Glyphosate
4.
Environ Health ; 21(1): 46, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35501856

ABSTRACT

BACKGROUND: Dietary habits have a profound influence on the metabolic activity of gut microorganisms and their influence on health. Concerns have been raised as to whether the consumption of foodstuffs contaminated with pesticides can contribute to the development of chronic disease by affecting the gut microbiome. We performed the first pesticide biomonitoring survey of the British population, and subsequently used the results to perform the first pesticide association study on gut microbiome composition and function from the TwinsUK registry. METHODS: Dietary exposure of 186 common insecticide, herbicide, or fungicide residues and the faecal microbiome in 65 twin pairs in the UK was investigated. We evaluated if dietary habits, geographic location, or the rural/urban environment, are associated with the excretion of pesticide residues. The composition and metabolic activity of faecal microbiota was evaluated using shotgun metagenomics and metabolomics respectively. We performed a targeted urine metabolomics analysis in order to evaluate whether pesticide urinary excretion was also associated with physiological changes. RESULTS: Pyrethroid and/or organophosphorus insecticide residues were found in all urine samples, while the herbicide glyphosate was found in 53% of individuals. Food frequency questionnaires showed that residues from organophosphates were higher with increased consumption of fruit and vegetables. A total of 34 associations between pesticide residue concentrations and faecal metabolite concentrations were detected. Glyphosate excretion was positively associated with an overall increased bacterial species richness, as well as to fatty acid metabolites and phosphate levels. The insecticide metabolite Br2CA, reflecting deltamethrin exposure, was positively associated with the phytoestrogens enterodiol and enterolactone, and negatively associated with some N-methyl amino acids. Urine metabolomics performed on a subset of samples did not reveal associations with the excretion of pesticide residues. CONCLUSIONS: The consumption of conventionally grown fruit and vegetables leads to higher ingestion of pesticides with unknown long-term health consequences. Our results highlight the need for future dietary intervention studies to understand effects of pesticide exposure on the gut microbiome and possible health consequences.


Subject(s)
Herbicides , Insecticides , Microbiota , Pesticide Residues , Pesticides , Adult , Dietary Exposure/analysis , Herbicides/analysis , Humans , Insecticides/analysis , Organophosphorus Compounds , Pesticide Residues/analysis , Vegetables/chemistry
5.
Environ Res ; 197: 111103, 2021 06.
Article in English | MEDLINE | ID: mdl-33811865

ABSTRACT

The toxicity of surfactants, which are an integral component of glyphosate-formulated products is an underexplored and highly debated subject. Since biomonitoring human exposure to glyphosate co-formulants is considered as a public health priority, we developed and validated a high-resolution mass spectrometry method to measure the urinary excretion of surfactants present in Roundup MON 52276, the European Union (EU) representative formulation of glyphosate-based herbicides. Quantification was performed measuring the 5 most abundant compounds in the mixture. We validated the method and showed that it is highly accurate, precise and reproducible with a limit of detection of 0.0004 µg/mL. We used this method to estimate the oral absorption of MON 52276 surfactants in Sprague-Dawley rats exposed to three concentrations of MON 52276 via drinking water for 90 days. MON 52276 surfactants were readily detected in urine of rats administered with this commercial Roundup formulation starting from a low concentration corresponding to the EU glyphosate acceptable daily intake. Our results provide a first step towards the implementation of surfactant co-formulant biomonitoring in human populations.


Subject(s)
Herbicides , Animals , Herbicides/toxicity , Rats , Rats, Sprague-Dawley , Surface-Active Agents/toxicity
6.
Environ Health ; 20(1): 87, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34340709

ABSTRACT

BACKGROUND: Flaws in the science supporting pesticide risk assessment and regulation stand in the way of progress in mitigating the human health impacts of pesticides. Critical problems include the scope of regulatory testing protocols, the near-total focus on pure active ingredients rather than formulated products, lack of publicly accessible information on co-formulants, excessive reliance on industry-supported studies coupled with reticence to incorporate published results in the risk assessment process, and failure to take advantage of new scientific opportunities and advances, e.g. biomonitoring and "omics" technologies. RECOMMENDED ACTIONS: Problems in pesticide risk assessment are identified and linked to study design, data, and methodological shortcomings. Steps and strategies are presented that have potential to deepen scientific knowledge of pesticide toxicity, exposures, and risks. We propose four solutions: (1) End near-sole reliance in regulatory decision-making on industry-supported studies by supporting and relying more heavily on independent science, especially for core toxicology studies. The cost of conducting core toxicology studies at labs not affiliated with or funded directly by pesticide registrants should be covered via fees paid by manufacturers to public agencies. (2) Regulators should place more weight on mechanistic data and low-dose studies within the range of contemporary exposures. (3) Regulators, public health agencies, and funders should increase the share of exposure-assessment resources that produce direct measures of concentrations in bodily fluids and tissues. Human biomonitoring is vital in order to quickly identify rising exposures among vulnerable populations including applicators, pregnant women, and children. (4) Scientific tools across disciplines can accelerate progress in risk assessments if integrated more effectively. New genetic and metabolomic markers of adverse health impacts and heritable epigenetic impacts are emerging and should be included more routinely in risk assessment to effectively prevent disease. CONCLUSIONS: Preventing adverse public health outcomes triggered or made worse by exposure to pesticides will require changes in policy and risk assessment procedures, more science free of industry influence, and innovative strategies that blend traditional methods with new tools and mechanistic insights.


Subject(s)
Environmental Exposure , Government Regulation , Pesticides/toxicity , Animals , Decision Making , Environmental Exposure/adverse effects , Environmental Exposure/legislation & jurisprudence , Environmental Exposure/prevention & control , Humans , Risk Assessment
7.
Int J Mol Sci ; 21(18)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32933098

ABSTRACT

The ß-thalassemias are an increasing challenge to health systems worldwide, caused by absent or reduced ß-globin (HBB) production. Of particular frequency in many Western countries is HBBIVSI-110(G > A) ß-thalassemia (HGVS name: HBB:c.93-21G > A). Its underlying mutation creates an abnormal splice acceptor site in the HBB gene, and while partially retaining normal splicing of HBB, it severely reduces HBB protein expression from the mutant locus and HBB loci in trans. For the assessment of the underlying mechanisms and of therapies targeting ß-thalassemia, accurate quantification of aberrant and normal HBB mRNA is essential, but to date, has only been performed by approximate methods. To address this shortcoming, we have developed an accurate, duplex reverse-transcription quantitative PCR assay for the assessment of the ratio and absolute quantities of normal and aberrant mRNA species as a tool for basic and translational research of HBBIVSI-110(G > A) ß-thalassemia. The method was employed here to determine mRNA ratios and quantities in blood and primary cell culture samples and correlate them with HBB protein levels. Moreover, with its immediate utility for ß-thalassemia and the mutation in hand, the approach can readily be adopted for analysis of alternative splicing or for quantitative assays of any disease-causing mutation that interferes with normal splicing.


Subject(s)
Alternative Splicing/genetics , Mutation/genetics , beta-Globins/genetics , beta-Thalassemia/genetics , Cells, Cultured , Humans , RNA, Messenger/genetics
8.
BMC Biotechnol ; 19(1): 75, 2019 11 09.
Article in English | MEDLINE | ID: mdl-31706316

ABSTRACT

BACKGROUND: DNA transposon-based vectors are effective nonviral tools for gene therapy and genetic engineering of cells. However, promoter DNA methylation and a near-random integration profile, which can result in transgene integration into heterochromatin, renders such vectors vulnerable to transcriptional repression. Therefore, to secure persistent transgene expression it may be necessary to protect transposon-embedded transgenes with anti-transcriptional silencing elements. RESULTS: We compare four different protective strategies in CHO-K1 cells. Our findings show robust protection from silencing of transgene cassettes mediated by the ubiquitous chromatin-opening element (UCOE) derived from the HNRPA2B1-CBX3 locus. Using a bioinformatic approach, we define a shorter HNRPA2B1-CBX3 UCOE core fragment and demonstrate that this can robustly maintain transgene expression after extended passaging of CHO-K1 cells carrying DNA transposon vectors equipped with this protective feature. CONCLUSIONS: Our findings contribute to the understanding of the mechanism of HNRPA2B1-CBX3 UCOE-based transgene protection and support the use of a correctly oriented core fragment of this UCOE for DNA transposon vector-based production of recombinant proteins in CHO-K1 cells.


Subject(s)
DNA Methylation/genetics , DNA Transposable Elements/genetics , Animals , CHO Cells , Cricetinae , Cricetulus , Promoter Regions, Genetic/genetics , Transgenes/genetics
9.
Arch Toxicol ; 92(8): 2533-2547, 2018 08.
Article in English | MEDLINE | ID: mdl-29947894

ABSTRACT

Chemical pollutant exposure is a risk factor contributing to the growing epidemic of non-alcoholic fatty liver disease (NAFLD) affecting human populations that consume a western diet. Although it is recognized that intoxication by chemical pollutants can lead to NAFLD, there is limited information available regarding the mechanism by which typical environmental levels of exposure can contribute to the onset of this disease. Here, we describe the alterations in gene expression profiles and metabolite levels in the human HepaRG liver cell line, a validated model for cellular steatosis, exposed to the polychlorinated biphenyl (PCB) 126, one of the most potent chemical pollutants that can induce NAFLD. Sparse partial least squares classification of the molecular profiles revealed that exposure to PCB 126 provoked a decrease in polyunsaturated fatty acids as well as an increase in sphingolipid levels, concomitant with a decrease in the activity of genes involved in lipid metabolism. This was associated with an increased oxidative stress reflected by marked disturbances in taurine metabolism. A gene ontology analysis showed hallmarks of an activation of the AhR receptor by dioxin-like compounds. These changes in metabolome and transcriptome profiles were observed even at the lowest concentration (100 pM) of PCB 126 tested. A decrease in docosatrienoate levels was the most sensitive biomarker. Overall, our integrated multi-omics analysis provides mechanistic insight into how this class of chemical pollutant can cause NAFLD. Our study lays the foundation for the development of molecular signatures of toxic effects of chemicals causing fatty liver diseases to move away from a chemical risk assessment based on in vivo animal experiments.


Subject(s)
Lipid Metabolism/drug effects , Liver/cytology , Metabolomics/methods , Polychlorinated Biphenyls/toxicity , Transcriptome/drug effects , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line , Gene Expression Profiling/methods , Humans , Inactivation, Metabolic/drug effects , Inactivation, Metabolic/genetics , Lipid Metabolism/genetics , Non-alcoholic Fatty Liver Disease/chemically induced , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
10.
Nucleic Acids Res ; 44(22): 10929-10945, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27507886

ABSTRACT

A short abnormal polyalanine expansion in the polyadenylate-binding protein nuclear-1 (PABPN1) protein causes oculopharyngeal muscular dystrophy (OPMD). Mutated PABPN1 proteins accumulate as insoluble intranuclear aggregates in muscles of OPMD patients. While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice have been established, the molecular mechanisms which trigger pathological defects in OPMD and the role of aggregates remain to be determined. Using exon array, for the first time we have identified several splicing defects in OPMD. In particular, we have demonstrated a defect in the splicing regulation of the muscle-specific Troponin T3 (TNNT3) mutually exclusive exons 16 and 17 in OPMD samples compared to controls. This splicing defect is directly linked to the SC35 (SRSF2) splicing factor and to the presence of nuclear aggregates. As reported here, PABPN1 aggregates are able to trap TNNT3 pre-mRNA, driving it outside nuclear speckles, leading to an altered SC35-mediated splicing. This results in a decreased calcium sensitivity of muscle fibers, which could in turn plays a role in muscle pathology. We thus report a novel mechanism of alternative splicing deregulation that may play a role in various other diseases with nuclear inclusions or foci containing an RNA binding protein.


Subject(s)
Muscular Dystrophy, Oculopharyngeal/metabolism , Poly(A)-Binding Protein I/metabolism , RNA Precursors/metabolism , Troponin T/genetics , Adult , Aged , Aged, 80 and over , Alternative Splicing , Animals , Case-Control Studies , Female , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Oculopharyngeal/genetics , Muscular Dystrophy, Oculopharyngeal/pathology , Poly(A)-Binding Protein I/genetics , Protein Aggregates , RNA Precursors/genetics , RNA Transport , Serine-Arginine Splicing Factors/metabolism , Troponin T/metabolism
11.
J Appl Toxicol ; 38(12): 1483-1491, 2018 12.
Article in English | MEDLINE | ID: mdl-29952068

ABSTRACT

Few studies have investigated non-target effects of neonicotinoid insecticides on mammalian physiology. This is largely due to the widespread perception that their weak affinity for nicotinic acetylcholine receptor subtypes in vertebrates makes mammalian exposures unlikely to pose health risks. To the best of our knowledge, we describe the first investigation evaluating the interaction of seven principal neonicotinoid insecticides (thiamethoxam, imidacloprid, clothianidin, flupyradifurone, dinotefuran, nitenpyram, thiacloprid) with oestrogen and thyroid hormone receptors, as well as their adipogenic effects, in mammalian cell culture assay systems. An E-Screen with MCF-7 and T-Screen with GH3 cells respectively showed a lack of oestrogen and thyroid hormone receptor agonist effects for any of the neonicotinoids tested. Adipogenicity was assessed by the ability to stimulate lipid accumulation in adipocyte differentiated 3T3-L1 cells, with only imidacloprid scoring positive in this assay causing triglyceride accumulation from a concentration of 50 mg l-1 . Data mining of ToxCast high-throughput screening assays revealed that this adipogenic effect of imidacloprid is probably mediated via the pregnane X receptor.


Subject(s)
Adipogenesis/drug effects , Endocrine Disruptors/toxicity , Insecticides/toxicity , Lipogenesis/drug effects , Neonicotinoids/toxicity , Receptors, Estrogen/metabolism , Receptors, Thyroid Hormone/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Cell Culture Techniques , Humans , MCF-7 Cells , Mice
12.
Cytotherapy ; 19(2): 311-326, 2017 02.
Article in English | MEDLINE | ID: mdl-28088294

ABSTRACT

BACKGROUND AIMS: Primary hematopoietic stem and progenitor cells (HSPCs) are key components of cell-based therapies for blood disorders and are thus the authentic substrate for related research. We propose that ubiquitous small-volume diagnostic samples represent a readily available and as yet untapped resource of primary patient-derived cells for cell- and gene-therapy studies. METHODS: In the present study we compare isolation and storage methods for HSPCs from normal and thalassemic small-volume blood samples, considering genotype, density-gradient versus lysis-based cell isolation and cryostorage media with different serum contents. Downstream analyses include viability, recovery, differentiation in semi-solid media and performance in liquid cultures and viral transductions. RESULTS: We demonstrate that HSPCs isolated either by ammonium-chloride potassium (ACK)-based lysis or by gradient isolation are suitable for functional analyses in clonogenic assays, high-level HSPC expansion and efficient lentiviral transduction. For cryostorage of cells, gradient isolation is superior to ACK lysis, and cryostorage in freezing media containing 50% fetal bovine serum demonstrated good results across all tested criteria. For assays on freshly isolated cells, ACK lysis performed similar to, and for thalassemic samples better than, gradient isolation, at a fraction of the cost and hands-on time. All isolation and storage methods show considerable variation within sample groups, but this is particularly acute for density gradient isolation of thalassemic samples. DISCUSSION: This study demonstrates the suitability of small-volume blood samples for storage and preclinical studies, opening up the research field of HSPC and gene therapy to any blood diagnostic laboratory with corresponding bioethics approval for experimental use of surplus material.


Subject(s)
Blood Specimen Collection/methods , Blood Specimen Collection/standards , Cell Separation/methods , Cell Separation/standards , Cell- and Tissue-Based Therapy/methods , Leukocytes/pathology , Thalassemia/blood , Blood Preservation/methods , Blood Preservation/standards , Cell Proliferation , Cell Survival , Cells, Cultured , Cryopreservation , Feasibility Studies , Freezing , Hematopoietic Stem Cells/pathology , Hematopoietic Stem Cells/physiology , Humans , Leukocyte Count , Leukocytes/physiology , Serologic Tests , Thalassemia/pathology
13.
Environ Health ; 15: 19, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26883814

ABSTRACT

The broad-spectrum herbicide glyphosate (common trade name "Roundup") was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization's International Agency for Research on Cancer recently concluded that glyphosate is "probably carcinogenic to humans." In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National Toxicology Program, as well as for biomonitoring as conducted by the U.S. Centers for Disease Control and Prevention.


Subject(s)
Carcinogens/toxicity , Consensus , Environmental Pollutants/toxicity , Glycine/analogs & derivatives , Herbicides/toxicity , Practice Guidelines as Topic , Glycine/toxicity , Humans , Risk Assessment/standards , Toxicity Tests/standards , United States , Glyphosate
14.
Brain ; 137(Pt 3): 819-33, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24459107

ABSTRACT

Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The peripheral innate immune system contributes to Huntington's disease pathogenesis and has been targeted successfully to modulate disease progression, but mechanistic understanding relating this to mutant huntingtin expression in immune cells has been lacking. Here we demonstrate that human Huntington's disease myeloid cells produce excessive inflammatory cytokines as a result of the cell-intrinsic effects of mutant huntingtin expression. A direct effect of mutant huntingtin on the NFκB pathway, whereby it interacts with IKKγ, leads to increased degradation of IκB and subsequent nuclear translocation of RelA. Transcriptional alterations in intracellular immune signalling pathways are also observed. Using a novel method of small interfering RNA delivery to lower huntingtin expression, we show reversal of disease-associated alterations in cellular function-the first time this has been demonstrated in primary human cells. Glucan-encapsulated small interfering RNA particles were used to lower huntingtin levels in human Huntington's disease monocytes/macrophages, resulting in a reversal of huntingtin-induced elevated cytokine production and transcriptional changes. These findings improve our understanding of the role of innate immunity in neurodegeneration, introduce glucan-encapsulated small interfering RNA particles as tool for studying cellular pathogenesis ex vivo in human cells and raise the prospect of immune cell-directed HTT-lowering as a therapeutic in Huntington's disease.


Subject(s)
Huntington Disease/genetics , Huntington Disease/pathology , Myeloid Cells/pathology , NF-kappa B/antagonists & inhibitors , NF-kappa B/physiology , Nerve Tissue Proteins/antagonists & inhibitors , Signal Transduction/genetics , Gene Expression Regulation/immunology , Humans , Huntingtin Protein , Huntington Disease/metabolism , Immunity, Innate/genetics , Myeloid Cells/immunology , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , RNA, Small Interfering/therapeutic use , Signal Transduction/immunology , U937 Cells
15.
Environ Health ; 14: 70, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26302742

ABSTRACT

BACKGROUND: Glyphosate-based herbicides (GBH) are the major pesticides used worldwide. Converging evidence suggests that GBH, such as Roundup, pose a particular health risk to liver and kidneys although low environmentally relevant doses have not been examined. To address this issue, a 2-year study in rats administering 0.1 ppb Roundup (50 ng/L glyphosate equivalent) via drinking water (giving a daily intake of 4 ng/kg bw/day of glyphosate) was conducted. A marked increased incidence of anatomorphological and blood/urine biochemical changes was indicative of liver and kidney structure and functional pathology. In order to confirm these findings we have conducted a transcriptome microarray analysis of the liver and kidneys from these same animals. RESULTS: The expression of 4224 and 4447 transcript clusters (a group of probes corresponding to a known or putative gene) were found to be altered respectively in liver and kidney (p < 0.01, q < 0.08). Changes in gene expression varied from -3.5 to 3.7 fold in liver and from -4.3 to 5.3 in kidneys. Among the 1319 transcript clusters whose expression was altered in both tissues, ontological enrichment in 3 functional categories among 868 genes were found. First, genes involved in mRNA splicing and small nucleolar RNA were mostly upregulated, suggesting disruption of normal spliceosome activity. Electron microscopic analysis of hepatocytes confirmed nucleolar structural disruption. Second, genes controlling chromatin structure (especially histone-lysine N-methyltransferases) were mostly upregulated. Third, genes related to respiratory chain complex I and the tricarboxylic acid cycle were mostly downregulated. Pathway analysis suggests a modulation of the mTOR and phosphatidylinositol signalling pathways. Gene disturbances associated with the chronic administration of ultra-low dose Roundup reflect a liver and kidney lipotoxic condition and increased cellular growth that may be linked with regeneration in response to toxic effects causing damage to tissues. Observed alterations in gene expression were consistent with fibrosis, necrosis, phospholipidosis, mitochondrial membrane dysfunction and ischemia, which correlate with and thus confirm observations of pathology made at an anatomical, histological and biochemical level. CONCLUSION: Our results suggest that chronic exposure to a GBH in an established laboratory animal toxicity model system at an ultra-low, environmental dose can result in liver and kidney damage with potential significant health implications for animal and human populations.


Subject(s)
Environmental Pollutants/toxicity , Glycine/analogs & derivatives , Herbicides/toxicity , Transcriptome/drug effects , Animals , Female , Gene Expression Profiling , Glycine/toxicity , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , Rats , Rats, Sprague-Dawley , Glyphosate
16.
Stem Cells ; 31(3): 488-99, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23307570

ABSTRACT

Methylation-induced gene silencing represents a major obstacle to efficient transgene expression in pluripotent cells and thereof derived tissues. As ubiquitous chromatin opening elements (UCOE) have been shown to prevent transgene silencing in cell lines and primary hematopoietic cells, we hypothesized a similar activity in pluripotent cells. This concept was investigated in the context of cytidine deaminase (CDD) gene transfer, an approach to render hematopoietic cells resistant to the chemotherapeutic agent Ara-C. When murine induced pluripotent stem cells (iPSC)/embryonic stem cells (ESCs) were transduced with self-inactivating lentiviral vectors using housekeeping (truncated elongation factor 1α; EFS) or viral (spleen focus-forming virus; SFFV) promoters, incorporation of an heterogeneous nuclear ribonucleoproteins A2 B1/chromobox protein homolog 3 locus-derived UCOE (A2UCOE) significantly increased transgene expression and Ara-C resistance and effectively prevented silencing of the SFFV-promoter. The EFS promoter showed relatively stable transgene expression in naïve iPSCs, but rapid transgene silencing was observed upon hematopoietic differentiation. When combined with the A2UCOE, however, the EFS promoter yielded stable transgene expression in 73% ± 6% of CD41(+) hematopoietic progeny, markedly increased CDD expression levels, and significantly enhanced Ara-C resistance in clonogenic cells. Bisulfite sequencing revealed protection from differentiation-induced promoter CpG methylation to be associated with these effects. Similar transgene promoting activities of the A2UCOE were observed during murine neurogenic differentiation, in naïve human pluripotent cells, and during nondirected multilineage differentiation of these cells. Thus, our data provide strong evidence that UCOEs can efficiently prevent transgene silencing in iPS/ESCs and their differentiated progeny and thereby introduce a generalized concept to circumvent differentiation-induced transgene silencing during the generation of advanced iPSC/ESC-based gene and cell therapy products.


Subject(s)
Chromatin/genetics , Gene Silencing , Induced Pluripotent Stem Cells/physiology , Animals , Cell Differentiation/genetics , Chromatin/metabolism , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Transgenes
18.
Curr Health Sci J ; 50(1): 94-105, 2024.
Article in English | MEDLINE | ID: mdl-38846475

ABSTRACT

The current study aimed to assess the possible endocrine disruptor effects on rat mammary tissue and reproductive organs during pregnancy and lactation when exposed to low doses of glyphosate and its combination with 2,4-dichlorophenoxyacetic acid (2,4-D) and dicamba. The study involved the exposure of pregnant Wistar rats to various regulatory-relevant doses of glyphosate, ranging from gestational day 6 until fine of the lactation period. Glyphosate doses corresponded to the European Union's glyphosate-acceptable daily intake (ADI; 0.5mg/kg bw/day) and no observed adverse effect level (NOAEL; 50mg/kg bw/day). The dose of the mixture of glyphosate, dicamba, and 2,4-D was at the European Union ADI for each herbicide namely 0.5, 0.002, and 0.3mg/kg bw/day, respectively. In the animals exposed to glyphosate NOAEL serum estradiol levels were increased compared to untreated animals, along with an upregulation of TNF-?, MMP-2, and MMP-9 as measured in mammary gland homogenates compared to non-treated animals. Moreover, in this group, a focally acute inflammatory infiltrate was observed in the mammary gland. Our study showed that short-term exposure to glyphosate at doses that are set as safe by regulators and thus without risk corroborated with a particular physiological state as gestation and lactation, can give rise to inflammatory changes in breast tissue in rats. These findings support the need for further evaluation of glyphosate and mixtures of glyphosate with other pesticides for public health protection, especially for those categories vulnerable to the potential endocrine disruptor properties of these pesticides such as pregnant women, newborns, and children.

19.
Nat Commun ; 15(1): 5006, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866738

ABSTRACT

Body mass results from a complex interplay between genetics and environment. Previous studies of the genetic contribution to body mass have excluded repetitive regions due to the technical limitations of platforms used for population scale studies. Here we apply genome-wide approaches, identifying an association between adult body mass and the copy number (CN) of 47S-ribosomal DNA (rDNA). rDNA codes for the 18 S, 5.8 S and 28 S ribosomal RNA (rRNA) components of the ribosome. In mammals, there are hundreds of copies of these genes. Inter-individual variation in the rDNA CN has not previously been associated with a mammalian phenotype. Here, we show that rDNA CN variation associates with post-pubertal growth rate in rats and body mass index in adult humans. rDNA CN is not associated with rRNA transcription rates in adult tissues, suggesting the mechanistic link occurs earlier in development. This aligns with the observation that the association emerges by early adulthood.


Subject(s)
Body Mass Index , DNA Copy Number Variations , DNA, Ribosomal , Animals , Humans , DNA, Ribosomal/genetics , Male , Rats , Female , Adult , Mammals/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism
20.
Environ Health Perspect ; 132(4): 45001, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38592230

ABSTRACT

BACKGROUND: The European Food Safety Authority (EFSA) recommended lowering their estimated tolerable daily intake (TDI) for bisphenol A (BPA) 20,000-fold to 0.2 ng/kg body weight (BW)/day. BPA is an extensively studied high production volume endocrine disrupting chemical (EDC) associated with a vast array of diseases. Prior risk assessments of BPA by EFSA as well as the US Food and Drug Administration (FDA) have relied on industry-funded studies conducted under good laboratory practice protocols (GLP) requiring guideline end points and detailed record keeping, while also claiming to examine (but rejecting) thousands of published findings by academic scientists. Guideline protocols initially formalized in the mid-twentieth century are still used by many regulatory agencies. EFSA used a 21st century approach in its reassessment of BPA and conducted a transparent, but time-limited, systematic review that included both guideline and academic research. The German Federal Institute for Risk Assessment (BfR) opposed EFSA's revision of the TDI for BPA. OBJECTIVES: We identify the flaws in the assumptions that the German BfR, as well as the FDA, have used to justify maintaining the TDI for BPA at levels above what a vast amount of academic research shows to cause harm. We argue that regulatory agencies need to incorporate 21st century science into chemical hazard identifications using the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) nonguideline academic studies in a collaborative government-academic program model. DISCUSSION: We strongly endorse EFSA's revised TDI for BPA and support the European Commission's (EC) apparent acceptance of this updated BPA risk assessment. We discuss challenges to current chemical risk assessment assumptions about EDCs that need to be addressed by regulatory agencies to, in our opinion, become truly protective of public health. Addressing these challenges will hopefully result in BPA, and eventually other structurally similar bisphenols (called regrettable substitutions) for which there are known adverse effects, being eliminated from all food-related and many other uses in the EU and elsewhere. https://doi.org/10.1289/EHP13812.


Subject(s)
Benzhydryl Compounds , Phenols , Humans , Food Safety , No-Observed-Adverse-Effect Level , Systematic Reviews as Topic
SELECTION OF CITATIONS
SEARCH DETAIL