ABSTRACT
How changes in enzyme structure and dynamics facilitate passage along the reaction coordinate is a fundamental unanswered question. Here, we use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL), ambient-temperature X-ray crystallography, computer simulations, and enzyme kinetics to characterize how covalent catalysis modulates isocyanide hydratase (ICH) conformational dynamics throughout its catalytic cycle. We visualize this previously hypothetical reaction mechanism, directly observing formation of a thioimidate covalent intermediate in ICH microcrystals during catalysis. ICH exhibits a concerted helical displacement upon active-site cysteine modification that is gated by changes in hydrogen bond strength between the cysteine thiolate and the backbone amide of the highly strained Ile152 residue. These catalysis-activated motions permit water entry into the ICH active site for intermediate hydrolysis. Mutations at a Gly residue (Gly150) that modulate helical mobility reduce ICH catalytic turnover and alter its pre-steady-state kinetic behavior, establishing that helical mobility is important for ICH catalytic efficiency. These results demonstrate that MISC can capture otherwise elusive aspects of enzyme mechanism and dynamics in microcrystalline samples, resolving long-standing questions about the connection between nonequilibrium protein motions and enzyme catalysis.
Subject(s)
Crystallography, X-Ray/methods , Enzymes , Catalysis , Cysteine/analogs & derivatives , Cysteine/chemistry , Cysteine/metabolism , Enzymes/chemistry , Enzymes/metabolism , Enzymes/ultrastructure , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Hydro-Lyases/ultrastructure , Models, Molecular , Protein ConformationABSTRACT
Described is an efficient stereocontrolled route into valuable, densely functionalized fluorinated phosphonates that takes advantage of (i) a Clostridial enzyme to set the absolute stereochemistry and (ii) a new [3,3]-sigmatropic rearrangement of the thiono-Claisen variety that is among the fastest sigmatropic rearrangements yet reported. Here, a pronounced rate enhancement is achieved by distal fluorination. This rearrangement is completely stereoretentive, parlaying the enzymatically established ß-C-O stereochemistry in the substrate into the δ-C-S stereochemistry in the product. The final products are of interest to chemical biology, with a platform for Zn-aminopeptidase A inhibitors being constructed here. The enzyme, Clostridium acetobutylicum (CaADH), recently expressed by our group, reduces a spectrum of γ,δ-unsaturated ß-keto-α,α-difluorophosphonate esters (93-99% ee; 10 examples). The resultant ß-hydroxy-α,α-difluorophosphonates possess the "L"-stereochemistry, opposite to that previously observed for the CaADH-reduction of ω-keto carboxylate esters ("D"), indicating an unusual active site plasticity. For the thiono-Claisen rearrangement, a notable structure-reactivity relationship is observed. Measured rate constants vary by over 3 orders of magnitude, depending upon thiono-ester structure. Temperature-dependent kinetics reveal an unusually favorable entropy of activation (ΔS() = 14.5 ± 0.6 e.u.). Most notably, a 400-fold rate enhancement is seen upon fluorination of the distal arene ring, arising from favorable enthalpic (ΔΔH() = -2.3 kcal/mol) and entropic (ΔΔS() = 4 e.u., i.e. 1.2 kcal/mol at rt) contributions. The unusual active site plasticity seen here is expected to drive structural biology studies on CaADH, while the exceptionally facile sigmatropic rearrangement is expected to drive computational studies to elucidate its underlying entropic and enthalpic basis.
Subject(s)
Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/metabolism , Catalytic Domain , Clostridium acetobutylicum/enzymology , Halogenation , Organophosphonates/chemistry , Organophosphonates/metabolism , Carboxylic Acids/chemistry , Kinetics , Models, Molecular , Organophosphonates/chemical synthesis , Solvents/chemistry , Stereoisomerism , Structure-Activity RelationshipABSTRACT
Over the past two decades, the domains of both frontline synthetic organic chemistry and process chemistry and have seen an increase in crosstalk between asymmetric organic/organometallic approaches and enzymatic approaches to stereocontrolled synthesis. This review highlights the particularly auspicious role for dehydrogenase enzymes in this endeavor, with a focus on dynamic reductive kinetic resolutions (DYRKR) to "deracemize" building blocks, often setting two stereocenters in so doing. The scope and limitations of such dehydrogenase-mediated processes are overviewed, as are future possibilities for the evolution of enzymatic DYRKR.
ABSTRACT
An NADP-dependent alcohol dehydrogenase from Clostridium acetobutylicum (CaADH) has been expressed and characterized. CaADH enantioselectively reduces aromatic α-, ß- and γ-keto esters to the corresponding D-hydroxy esters and provides a building block for the Taxotère side chain (95% yield, 95% de, 99% ee) by dynamic reductive kinetic resolution (DYRKR).