Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Eur J Immunol ; 51(2): 311-318, 2021 02.
Article in English | MEDLINE | ID: mdl-32845012

ABSTRACT

Autoimmune regulator+ (Aire) medullary thymic epithelial cells (mTECs) play a critical role in tolerance induction. Several studies demonstrated that Aire+ mTECs differentiate further into Post-Aire cells. Yet, the identification of terminal stages of mTEC maturation depends on unique fate-mapping mouse models. Herein, we resolve this limitation by segmenting the mTEChi (MHCIIhi CD80hi ) compartment into mTECA/hi (CD24- Sca1- ), mTECB/hi (CD24+ Sca1- ), and mTECC/hi (CD24+ Sca1+ ). While mTECA/hi included mostly Aire-expressing cells, mTECB/hi contained Aire+ and Aire- cells and mTECC/hi were mainly composed of cells lacking Aire. The differential expression pattern of Aire led us to investigate the precursor-product relationship between these subsets. Strikingly, transcriptomic analysis of mTECA/hi , mTECB/hi , and mTECC/hi sequentially mirrored the specific genetic program of Early-, Late- and Post-Aire mTECs. Corroborating their Post-Aire nature, mTECC/hi downregulated the expression of tissue-restricted antigens, acquired traits of differentiated keratinocytes, and were absent in Aire-deficient mice. Collectively, our findings reveal a new and simple blueprint to survey late stages of mTEC differentiation.


Subject(s)
Cell Differentiation/genetics , Cell Differentiation/immunology , Epithelial Cells/immunology , Keratinocytes/immunology , Thymus Gland/immunology , Transcription Factors/genetics , Animals , Down-Regulation/genetics , Down-Regulation/immunology , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Mice , Mice, Inbred C57BL , Transcription Factors/immunology , AIRE Protein
2.
Cell Microbiol ; 22(1): e13109, 2020 01.
Article in English | MEDLINE | ID: mdl-31454143

ABSTRACT

Apoptosis-inducing protein of 56 kDa (AIP56) is a major virulence factor of Photobacterium damselae subsp. piscicida, a gram-negative pathogen that infects warm water fish species worldwide and causes serious economic losses in aquacultures. AIP56 is a single-chain AB toxin composed by two domains connected by an unstructured linker peptide flanked by two cysteine residues that form a disulphide bond. The A domain comprises a zinc-metalloprotease moiety that cleaves the NF-kB p65, and the B domain is involved in binding and internalisation of the toxin into susceptible cells. Previous experiments suggested that disruption of AIP56 disulphide bond partially compromised toxicity, but conclusive evidences supporting the importance of that bond in intoxication were lacking. Here, we show that although the disulphide bond of AIP56 is dispensable for receptor recognition, endocytosis, and membrane interaction, it needs to be intact for efficient translocation of the toxin into the cytosol. We also show that the host cell thioredoxin reductase-thioredoxin system is involved in AIP56 intoxication by reducing the disulphide bond of the toxin at the cytosol. The present study contributes to a better understanding of the molecular mechanisms operating during AIP56 intoxication and reveals common features shared with other AB toxins.


Subject(s)
Apoptosis Regulatory Proteins/chemistry , Bacterial Toxins/metabolism , Cytosol/metabolism , Disulfides , Oxidation-Reduction , Photobacterium/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Cells, Cultured , Endocytosis , Fishes/microbiology , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Photobacterium/pathogenicity , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Thioredoxin-Disulfide Reductase/metabolism , Virulence Factors/metabolism
3.
Blood ; 130(4): 478-488, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28559356

ABSTRACT

Thymic epithelial cells (TECs) provide crucial microenvironments for T-cell development and tolerance induction. As the regular function of the thymus declines with age, it is of fundamental and clinical relevance to decipher new determinants that control TEC homeostasis in vivo. Beyond its recognized tumor suppressive function, p53 controls several immunoregulatory pathways. To study the cell-autonomous role of p53 in thymic epithelium functioning, we developed and analyzed mice with conditional inactivation of Trp53 in TECs (p53cKO). We report that loss of p53 primarily disrupts the integrity of medullary TEC (mTEC) niche, a defect that spreads to the adult cortical TEC compartment. Mechanistically, we found that p53 controls specific and broad programs of mTEC differentiation. Apart from restraining the expression and responsiveness of the receptor activator of NF-κB (RANK), which is central for mTEC differentiation, deficiency of p53 in TECs altered multiple functional modules of the mTEC transcriptome, including tissue-restricted antigen expression. As a result, p53cKO mice presented premature defects in mTEC-dependent regulatory T-cell differentiation and thymocyte maturation, which progressed to a failure in regular and regenerative thymopoiesis and peripheral T-cell homeostasis in the adulthood. Lastly, peripheral signs of altered immunological tolerance unfold in mutant mice and in immunodeficient mice that received p53cKO-derived thymocytes. Our findings position p53 as a novel molecular determinant of thymic epithelium function throughout life.


Subject(s)
Cell Differentiation/immunology , Epithelial Cells/immunology , T-Lymphocytes, Regulatory/immunology , Thymocytes/immunology , Tumor Suppressor Protein p53/immunology , Animals , Cell Differentiation/genetics , Epithelial Cells/cytology , Mice , Mice, Knockout , T-Lymphocytes, Regulatory/cytology , Thymocytes/cytology , Thymus Gland , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL