Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Chemistry ; 30(2): e202302793, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37815406

ABSTRACT

Temperature-modulated colloidal phase of plasmonic nanoparticles is a convenient playground for resettable soft-actuators or colorimetric sensors. To render reversible clustering under temperature change, bulky ligands are required, especially if anisotropic morphologies are of interest. This study showcases thermoresponsive gold nanorods by employing small surface ligands, bis (p-sulfonatophenyl) phenyl-phosphine dihydrate dipotassium salt (BSPP) and native cationic surfactant. Temperature-dependent analysis in real-time allowed to describe the structural features (interparticle distance and cluster size) as well as thermal parameters, melting and freezing temperatures. These findings suggest that neither covalent Au-S bonds nor bulky ligands are required to obtain a robust thermoresponsive system based on anisotropic gold nanoparticles, paving the way to stimuli-responsive nanoparticles with a wide range of sizes and geometries.

2.
J Chem Phys ; 159(13)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37787136

ABSTRACT

By means of massive (more than 1.2 · 106 molecules) molecular dynamics simulations at 300 K we have disentangled self- and cross-dipolar contributions to the dielectric relaxation of liquid water that cannot be experimentally resolved. We have demonstrated that cross dipolar correlations are of paramount importance. They amount for almost a 60% of the total dielectric amplitude. The corresponding relaxation function is a one-step Debye-like function with a characteristic time, τcross, of the order of the phenomenological Debye time, τD. In contrast, the relaxation function corresponding to the self-contribution is rather complex and contains a fast decay related to dipolar librations and a second relaxation step that can be well described by two exponentials: a low-amplitude fast process (τ0 = 0.31 ps) and a main slow process (τself = 5.4 ps) that fully randomizes the dipolar orientation. In addition to dipolar relaxation functions, we have also calculated scattering-like magnitudes characterizing translation and rotation of water molecules. Although these processes can be considered as "jump" processes in the short time range, at the time scale of about τD-τcross, at which the cross-dipolar correlations decay to zero, the observed behavior cannot be distinguished from that corresponding to uncoupled Brownian translational and rotational diffusion. We propose that this is the reason why the Debye model, which does not consider intermolecular dipolar interactions, seems to work at time t ≳ τD.

3.
J Chem Phys ; 158(18)2023 May 14.
Article in English | MEDLINE | ID: mdl-37154281

ABSTRACT

By using time-of-flight neutron spectroscopy with polarization analysis, we have separated coherent and incoherent contributions to the scattering of deuterated tetrahydrofuran in a wide scattering vector (Q)-range from meso- to inter-molecular length scales. The results are compared with those recently reported for water to address the influence of the nature of inter-molecular interactions (van der Waals vs hydrogen bond) on the dynamics. The phenomenology found is qualitatively similar in both systems. Both collective and self-scattering functions are satisfactorily described in terms of a convolution model that considers vibrations, diffusion, and a Q-independent mode. We observe a crossover in the structural relaxation from being dominated by the Q-independent mode at the mesoscale to being dominated by diffusion at inter-molecular length scales. The characteristic time of the Q-independent mode is the same for collective and self-motions and, contrary to water, faster and with a lower activation energy (≈1.4 Kcal/mol) than the structural relaxation time at inter-molecular length scales. This follows the macroscopic viscosity behavior. The collective diffusive time is well described by the de Gennes narrowing relation proposed for simple monoatomic liquids in a wide Q-range entering the intermediate length scales, in contraposition to the case of water.

4.
Angew Chem Int Ed Engl ; 62(46): e202313502, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37792399

ABSTRACT

We perform the conversion of a commodity plastic of common use in pipes, window frames, medical devices, flexible hoses, etc. like polyvinyl chloride (PVC) to single-chain nanoparticles (SCNPs). SCNPs are versatile, protein-mimetic soft nano-objects of growing interest for catalysis, sensing, and nanomedicine, among other uses. We demonstrate that the metamorphosis process -as induced through metal-free click chemistry- leads to well-defined, uniform SCNPs that are stable during storage in the solid state for months. All the conversion process (from PVC isolation to PVC-SCNPs synthesis) can be run in a green, dipolar aprotic solvent and involving, when required, a simple mixture of ethanol and water (1/1 vol.) as non-solvent. The resulting PVC-SCNPs are investigated as recyclable, metalloenzyme-mimetic catalysts for several representative Cu(II)-catalyzed organic reactions. The method could be valid for the metamorphosis and valorization of other commodity plastics in which it is feasible to install azide functional groups in their linear polymer chains.

5.
Soft Matter ; 17(4): 840-852, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33245741

ABSTRACT

We present results concerning the fabrication of a new magnetorheological fluid with FeCo magnetic nanoparticles (NPs) as magnetic fillers. These NPs have been fabricated by using the chemical reduction technique and show a pure crystalline phase with size ranging among 30-50 nm and high magnetization, 212 ± 2 A m2 kg-1. They agglomerate due to the strong magnetic dipolar interaction among them. These FeCo nanoparticles were used to synthesize a magnetorheological fluid by using oleic acid as surfactant, mineral oil as carrier liquid and Aerosil 300 as additive to control the viscosity of the fluid. The synthesized fluid showed a strong magnetorheological response with increasing shear stress values as the magnetic field intensity increases. Thus, we have measured a superior performance up to 616.7 kA m-1, with a yield stress value of 2729 Pa, and good reversibility after demagnetization process. This value competes with the best ones reported in the most recent literature. We have compared the obtained results with our previous reported ones by using high magnetization Fe NPs fabricated by the electrical explosion of wire method (Fe-EEW).

6.
J Chem Phys ; 155(24): 244509, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34972354

ABSTRACT

We present an investigation by molecular dynamics (MD)-simulations of the coherent dynamic structure factor, S(Q, t) (Q: momentum transfer), of liquid water at the mesoscale (0.1 Å-1 ≤ Q ≤ Qmax) [Qmax ≈ 2 Å-1: Q-value of the first maximum of the static structure factor, S(Q), of water]. The simulation cell-large enough to address the collective properties at the mesoscale-is validated by direct comparison with recent results on the dynamic structure factor in the frequency domain obtained by neutron spectroscopy with polarization analysis [Arbe et al., Phys. Rev. Res. 2, 022015 (2020)]. We have not only focused on the acoustic excitations but also on the relaxational contributions to S(Q, t). The analysis of the MD-simulation results-including the self- and distinct contributions to the diffusive part of S(Q, t)-nicely explains why the relaxation process hardly depends on Q in the low Q-range (Q ≤ 0.4 Å-1) and how it crosses over to a diffusion-driven process at Q ≈ Qmax. Our simulations also give support to the main assumptions of the model used to fit the experimental data in the above mentioned paper. The application of such a model to the simulation S(Q, t) data delivers (i) results for the relaxation component of S(Q, t) in agreement with those obtained from neutron experiments and (ii) longitudinal and transverse hydrodynamic-like components with similar features than those identified in previous simulations of the longitudinal and transverse current spectra directly. On the other hand, in general, our MD-simulations results of S(Q, t) qualitatively agree with the viscoelastic transition framework habitually used to describe inelastic x-ray scattering results.

7.
Angew Chem Int Ed Engl ; 60(7): 3534-3539, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33264463

ABSTRACT

Self-reporting fluorescence methods for monitoring folding and aggregation of proteins have a long history in biochemistry. Placing orthogonal luminophores within individual synthetic polymer chains for self-reporting both folding (i.e., its intramolecular compaction to isolated single-chain nanoparticles, SCNPs) and unbidden aggregation (i.e., the intermolecular association of SCNPs) remains a great challenge. Herein, a simple and efficient platform to identify both single-chain compaction and intermolecular aggregation phenomena via photoluminescence is presented based on simultaneous synthesis through Hantzsch ester formation of orthogonal luminophores within the same polymer chain. Starting from non-luminescent ß-ketoester-decorated chains, intramolecular compaction is visually detected through fluorescence arising from Hantzsch fluorophores generated as intra-chain connectors during folding. Complementary, intermolecular association is identified via aggregation-induced emission (AIE) from orthogonal luminophores displaying intense photoluminescence at redshifted wavelengths after formation of multi-SCNPs assemblies.

8.
Phys Rev Lett ; 123(18): 187802, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31763907

ABSTRACT

We report a microscopic observation of the time-dependent dynamic tube dilation process on isofrictional bidisperse melts. By applying neutron spin echo (NSE) and dielectric techniques on blends of long polyisoprene (PI) chains with short PI additives with different topology, we access the dynamics of the tube dilation process on a molecular scale. The time-dependent tube dilation is directly revealed by NSE as an additional time dependence of the dynamic structure factor in the local reptation regime. We identify the characteristic time of tube dilation as the terminal time of the additive.

9.
Macromol Rapid Commun ; 40(9): e1900046, 2019 May.
Article in English | MEDLINE | ID: mdl-30801882

ABSTRACT

Access to completely deuterated single-chain nanoparticles (dSCNPs) has remained an unresolved issue. Herein, the first facile and efficient procedure to produce dSCNPs is reported, which comprises: i) the use of commercially available perdeuterated cyclic ether monomers as starting reagents, ii) a ring-opening copolymerization process performed in bulk to produce a neat dSCNP precursor, iii) a standard azidation reaction to decorate this precursor with azide moieties, and iv) a facile intramolecular azide photodecomposition step carried out under UV irradiation at high dilution providing with highly valuable, completely deuterated soft nano-objects from the precursor. dSCNPs are used to investigate by means of neutron-scattering measurements the form factor (radius of gyration, scaling exponent) of polyethylene oxide (PEO) chains in nanocomposites with different amounts of dSCNPs. Moreover, to illustrate the possibilities offered by the synthetic route disclosed in this communication for potential applications, the significant reduction in viscosity observed in a pure melt of polyether-based single-chain nanoparticles when compared to a melt of the corresponding linear polymer chains is shown.


Subject(s)
Azides/chemistry , Deuterium/chemistry , Nanoparticles/chemistry , Neutrons
10.
Int J Mol Sci ; 19(12)2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30563168

ABSTRACT

The 191-residue-long LrtA protein of Synechocystis sp. PCC 6803 is involved in post-stress survival and in stabilizing 70S ribosomal particles. It belongs to the hibernating promoting factor (HPF) family, intervening in protein synthesis. The protein consists of two domains: The N-terminal region (N-LrtA, residues 1⁻101), which is common to all the members of the HPF, and seems to be well-folded; and the C-terminal region (C-LrtA, residues 102⁻191), which is hypothesized to be disordered. In this work, we studied the conformational preferences of isolated C-LrtA in solution. The protein was disordered, as shown by computational modelling, 1D-¹H NMR, steady-state far-UV circular dichroism (CD) and chemical and thermal denaturations followed by fluorescence and far-UV CD. Moreover, at physiological conditions, as indicated by several biochemical and hydrodynamic techniques, isolated C-LrtA intervened in a self-association equilibrium, involving several oligomerization reactions. Thus, C-LrtA was an oligomeric disordered protein.


Subject(s)
Bacterial Proteins/chemistry , Intrinsically Disordered Proteins/chemistry , Models, Molecular , Protein Multimerization , Ribosomal Proteins/chemistry , Synechococcus/chemistry , Protein Domains
11.
Phys Chem Chem Phys ; 19(40): 27739-27754, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28984889

ABSTRACT

We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore should be applicable to other biomolecular solutions.

12.
Macromol Rapid Commun ; 37(13): 1060-5, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27168223

ABSTRACT

Controlling the spatial distribution of catalytic sites in metallo-folded single-chain nanoparticles (SCNPs) is a first step toward the rational design of improved catalytic soft nano-objects. Here an unexplored pathway is reported for tuning the internal structure of metallo-folded SCNPs. Unlike the conventional SCNP synthesis in good solvent (protocol I), the proposed new route (protocol II) is based on the use of amphiphilic random copolymers and transfer, after SCNP formation, from selective to good (nonselective) solvent conditions. The size and morphology of the SCNPs obtained by the two protocols, and the corresponding spatial distribution of the catalytic sites, have been determined by combining results from size exclusion chromatography with triple detection, small-angle X-ray scattering and molecular dynamics (MD) simulations. Remarkably, the use of these protocols allows the tuning of the internal structure of the metallo-folded SCNPs, as supported by MD simulations results. While the conventional protocol I yields a homogeneous distribution of the catalytic sites in the SCNP, these are arranged into clusters in the case of protocol II.


Subject(s)
Metal Nanoparticles/chemistry , Organometallic Compounds/chemistry , Polymers/chemistry , Molecular Dynamics Simulation , Molecular Structure , Organometallic Compounds/chemical synthesis , Particle Size , Polymers/chemical synthesis , Solvents/chemistry
13.
Macromol Rapid Commun ; 37(20): 1676-1681, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27568984

ABSTRACT

The synthesis of symmetric cyclo poly(ε-caprolactone)-block-poly(l(d)-lactide) (c(PCL-b-PL(D)LA)) by combining ring-opening polymerization of ε-caprolactone and lactides and subsequent click chemistry reaction of the linear precursors containing antagonist functionalities is presented. The two blocks can sequentially crystallize and self-assemble into double crystalline spherulitic superstructures. The cyclic chain topology significantly affects both the nucleation and the crystallization of each constituent, as gathered from a comparison of the behavior of linear precursors and cyclic block copolymers. The stereochemistry of the PLA block does not have a significant effect on the nonisothermal crystallization of both linear and cyclo PCL-b-PDLA and PCL-b-PLLA copolymers.


Subject(s)
Polyesters/chemistry , Crystallization , Molecular Structure , Particle Size , Polyesters/chemical synthesis , Surface Properties
14.
Macromol Rapid Commun ; 36(17): 1592-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26139198

ABSTRACT

Endowing unimolecular soft nanoobjects with biomimetic functions is attracting significant interest in the emerging field of single-chain technology. Inspired by the compartmentalized structure and polymerase activity of metalloenzymes, copper-containing compact nanoglobules have been designed, synthesized, and characterized endowed with metalloenzyme mimicking characteristics toward controlled synthesis of water-soluble polymers and thermoresponsive hydrogels. When compared to metalloenzymes, artificial nanoobjects endowed with metalloenzyme mimicking characteristics offer increased stability against thermal changes and reduced degradability by hydrolytic enzymes.


Subject(s)
Enzymes/metabolism
15.
Macromolecules ; 57(12): 5639-5647, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38948182

ABSTRACT

Polymer vitrimers are a new class of materials that combine the advantages of thermoplastics and thermosets. This is due to the dynamic nature of the chemical bonds linking different chains. However, how this property affects the polymer dynamics at different length scales is still an open question. Here, we investigate the dynamics of model vitrimers based on well-defined polyisoprene (PI) chains using broadband dielectric spectroscopy. In this way, we study the polymer dynamics from the segmental to the whole chain scale, taking advantage of the fact that PI belongs to the class of molecules that exhibit a net dipole moment associated with the end-to-end vector. Three distinct relaxation phenomena are identified. The fastest relaxation is attributed to the segmental PI dynamics with a small influence of the cross-linking. An intermediate relaxation attributed to the dipolar character of the cross-linker is also observed. The slower identified relaxation component, corresponding to limited fluctuations of the end-to-end PI chains, is found to be determined by the dynamics of the clusters formed by the cross-linkers with an average time scale orders of magnitude faster than that of the terminal relaxation as inferred from the viscous flow.

16.
ACS Polym Au ; 4(2): 140-148, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38618005

ABSTRACT

Herein, we disclose a unique and selective reagent for the cleavage of stable azaylides prepared by the nonhydrolysis Staudinger reaction, enabling the on-demand unfolding of robust single-chain nanoparticles (SCNPs). SCNPs with promising use in catalysis, nanomedicine, and sensing are obtained through intrachain folding of discrete synthetic polymer chains. The unfolding of SCNPs involving reversible interactions triggered by a variety of external stimuli (e.g., pH, temperature, light, and redox potential) or substances (e.g., competitive reagents, solvents, and anions) is well known. Conversely, methods for the unfolding (i.e., intrachain disassembly) of SCNPs with stronger covalent interactions are scarce. We show that trimethylsilanol (Me3SiOH) triggers the efficient unfolding of robust "Staudinger" SCNPs with stable azaylide (-N=P-) moieties as intrachain cross-linking units showing exceptional stability toward water, air, and CS2, a standard reagent for azaylides. As a consequence, Me3SiOH arises as a rare, exceptional, and valuable reagent for the cleavage of stable azaylides prepared by the nonhydrolysis Staudinger reaction.

17.
ACS Omega ; 9(12): 13728-13737, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38560004

ABSTRACT

Geopolymers, a class of sustainable inorganic materials derived from natural and recycled resources, hold promise for various applications, including thermoelectric power generation. This study delves into the thermoelectric properties of Ikere white (IKW)-geopolymer, derived from kaolin clay, by employing rigorous measurements of thermal conductivity, electrical conductivity, and Seebeck coefficient. The investigation elucidates the pivotal role of temperature and ions in shaping the thermoelectric performance of IKW-geopolymer. Electrical conductivity analysis pinpoints ions within the geopolymer's channels as primary contributors. Beyond a critical temperature, the evaporation of bulk water triggers a transition of charge carriers from one- to three-dimensional motion, resulting in reduced conductivity. The Seebeck coefficient exhibits a range from -182 to 42 µV/K, with its time-dependent profile suggesting that ions potentially drive thermoelectricity in cementitious materials. Notably, a unique transition from n-type to p-type behavior was observed in the geopolymer, opening new avenues for ionic thermoelectric capacitors. These insights advance our understanding of thermoelectric behavior in geopolymers and have the potential to propel the development of novel building materials for energy conversion applications.

18.
ACS Sustain Chem Eng ; 12(5): 1911-1917, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38333204

ABSTRACT

The urban heat island effect has become a critical issue in urban areas, intensifying heat-related problems and increasing energy consumption. A sustainable cement formulation that combines ordinary Portland cement (OPC) with a carbonated aggregate derived from Periwinkle shell powder for the development of an efficient cool material is presented. Through a carbonation process, the aggregate undergoes a transformation, capturing carbon dioxide (CO2) and converting it into calcite. The resulting cement mixture exhibits high solar reflective properties, making it a potential candidate for cool pavement and roof applications. In this study, the raw materials, including the Periwinkle shell powder, were characterized, and the carbonation process was evaluated to quantify the CO2 capture efficiency. Additionally, a real test of the efficiency of this new cement on a roof demonstrated that the material achieved a significant cooling effect, being 6 °C cooler than that with standard OPC at the peak of solar radiation.

19.
Macromolecules ; 57(10): 4706-4716, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38827957

ABSTRACT

We present a neutron spin echo (NSE) investigation to examine the impact of macromolecular crowding on the dynamics of single-chain nanoparticles (SCNPs), serving as synthetic models for biomacromolecules with flexibility and internal degrees of freedom, such as intrinsically disordered proteins (IDPs). In particular, we studied the dynamics of a medium-size poly(methyl methacrylate) (PMMA)-based SCNP (33 kDa) in solutions with low- (10 kDa) and high- (100 kDa) molecular weight analogous deuterated PMMA linear crowders. The dynamic structure factors of the SCNPs in dilute solution show certain degrees of freedom, yet the analysis in terms of the Zimm model reveals high internal friction that effectively stiffens the chain-a phenomenon also observed for IDPs. Under crowding conditions, the internal dynamics remains essentially unchanged, but the center-of-mass diffusion slows down. The effective viscosity felt by the SCNPs at the timescales probed by NSE is lower than the macroscopic viscosity of the crowder solution, and it does not depend significantly on the molecular weight.

20.
Adv Healthc Mater ; : e2401683, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973211

ABSTRACT

This work introduces rationally designed, improved amphiphilic single-chain polymer nanoparticles (SCNPs) for imaging and photodynamic therapy (PDT) in zebrafish embryo xenografts. SCNPs are ultrasmall polymeric nanoparticles with sizes similar to proteins, making them ideal for biomedical applications. Amphiphilic SCNPs result from the self-assembly in water of isolated synthetic polymeric chains through intrachain hydrophobic interactions, mimicking natural biomacromolecules and, specially, proteins (in size and when loaded with drugs, metal ions or fluorophores also in function). These ultrasmall, soft nanoparticles have various applications, including catalysis, sensing, and nanomedicine. Initial in vitro experiments with nonfunctionalized, amphiphilic SCNPs loaded with a photosensitizing Zn phthalocyanine with four nonperipheral isobutylthio substituents, ZnPc, showed promise for PDT. Herein, the preparation of improved, amphiphilic SCNPs containing ZnPc as highly efficient photosensitizer encapsulated within the nanoparticle and surrounded by anthracene units is disclosed. The amount of anthracene groups and ZnPc molecules within each single-chain nanoparticle controls the imaging and PDT properties of these nanocarriers. Critically, this work opens the way to improved PDT applications based on amphiphilic SCNPs as a first step toward ideal, long-term artificial photo-oxidases (APO).

SELECTION OF CITATIONS
SEARCH DETAIL