Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569460

ABSTRACT

We investigated the possible adsorption of each of the main building blocks of spider silk: alanine, glycine, leucine, and proline. This knowledge could help develop new biocompatible materials and favors the creation of new biosensors. We used ab initio density functional theory methods to study the variations in the optical absorption, reflectivity, and band structure of a modified graphene surface interacting with these four molecules. Four modification cases were considered: graphene with vacancies at 5.55% and fluorine, nitrogen, or oxygen doping, also at 5.55%. We found that, among the cases considered, graphene with vacancies is the best candidate to develop optical biosensors to detect C=O amide and differentiate glycine and leucine from alanine and proline in the visible spectrum region. Finally, from the projected density of states, the main changes occur at deep energies. Thus, all modified graphene's electronic energy band structure undergoes only tiny changes when interacting with amino acids.

2.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563323

ABSTRACT

Using DFT simulations, we studied the interaction of a semifullerene C30 and a defected graphene layer. We obtained the C30 chemisorbs on the surface. We also found the adsorbed C30 chemisorbs, Li, Ti, or Pt, on its concave part. Thus, the resulting system (C30-graphene) is a graphene layer decorated with a metal-doped C30. The adsorption of the molecules depends on the shape of the base of the semifullerene and the dopant metal. The CO molecule adsorbed without dissociation in all cases. When the bottom is a pentagon, the adsorption occurs only with Ti as the dopant. It also adsorbs for a hexagon as the bottom with Pt as the dopant. The carbon dioxide molecule adsorbs in the two cases of base shape but only when lithium is the dopant. The adsorption occurs without dissociation. The ozone molecule adsorbs on both surfaces. When Ti or Pt are dopants, we found that the O3 molecule always dissociates into an oxygen molecule and an oxygen atom. When Li is the dopant, the O3 molecule adsorbs without dissociation. Methane did not adsorb in any case. Calculating the recovery time at 300 K, we found that the system may be a sensor in several instances.


Subject(s)
Graphite , Ozone , Carbon Dioxide , Carbon Monoxide , Ions , Lithium , Methane , Oxygen
3.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232499

ABSTRACT

Using structural relaxation calculations and first-principles molecular dynamics (FPMD), we performed numerical simulations to explore the interaction of a 2D MoS2 surface and a platinum atom, calculating the optical properties of the resulting material. We explored three initial positions for the interaction of the Pt atom and the pristine MoS2 surface, plus another position between Pt and the MoS2 surface with a sulfur vacancy VS. The surface absorbed the Pt atom in all cases considered, with absorption energies ranging from -2.77 eV to -5.83 eV. We calculated the optical properties and band structure of the two cases with the largest absorption energies (-3.45 eV and -5.83 eV). The pristine MoS2 is a semiconductor with a gap of around 1.80 eV. With the adsorption of the Pt atom (the -3.45 eV case), the material reduces its band gap to 0.95 eV. Additionally, the optical absorption in the visible range is greatly increased. The energy band structure of the 2D MoS2 with a sulfur vacancy VS shows a band gap of 0.74 eV, with consequent changes in its optical properties. After the adsorption of Pt atoms in the VS vacancy, the material has a band gap of 1.06 eV. In this case, the optical absorption in the visible range increases by about eight times. The reflectivity in the infrared range gets roughly doubled for both situations of the Pt-absorbed atom considered. Finally, we performed two FPMD runs at 300 K to test the stability of the cases with the lowest and highest absorption energies observed, confirming the qualitative results obtained with the structural relaxations.


Subject(s)
Molybdenum , Platinum , Semiconductors , Sulfur
4.
Int J Mol Sci ; 22(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202099

ABSTRACT

We performed ab initio numerical simulations with the density functional theory to investigate the variations in the band structure, optical absorption, and the reflectivity of vacancy-graphene doped with nitrogen, oxygen, and fluorine for different densities. We considered the density values 0.78%, 1.02%, 1.39%, 2.00%, 3.12%, 5.55%, and 12.5% for the vacancies and doping. In the infrared and visible ranges for all cases, vacancies included, there is a substantial increment in the absorption and reflectivity concerning graphene. The most significant changes are for fluorine and oxygen at a concentration of 12.5%.


Subject(s)
Fluorine/chemistry , Graphite/chemistry , Nitrogen/chemistry , Oxygen/chemistry , Spectrum Analysis , Electrons , Molecular Structure , Nanoparticles/chemistry
5.
Proc Natl Acad Sci U S A ; 114(48): 12725-12730, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29133410

ABSTRACT

Flavoproteins participate in a wide variety of physiologically relevant processes that typically involve redox reactions. Within this protein superfamily, there exists a group that is able to transfer reducing equivalents from FAD to a redox-active disulfide bridge, which further reduces disulfide bridges in target proteins to regulate their structure and function. We have identified a previously undescribed type of flavin enzyme that is exclusive to oxygenic photosynthetic prokaryotes and that is based on the primary sequence that had been assigned as an NADPH-dependent thioredoxin reductase (NTR). However, our experimental data show that the protein does not transfer reducing equivalents from flavins to disulfides as in NTRs but functions in the opposite direction. High-resolution structures of the protein from Gloeobacter violaceus and Synechocystis sp. PCC6803 obtained by X-ray crystallography showed two juxtaposed FAD molecules per monomer in redox communication with an active disulfide bridge in a variant of the fold adopted by NTRs. We have tentatively named the flavoprotein "DDOR" (diflavin-linked disulfide oxidoreductase) and propose that its activity is linked to a thiol-based transfer of reducing equivalents in bacterial membranes. These findings expand the structural and mechanistic repertoire of flavoenzymes with oxidoreductase activity and pave the way to explore new protein engineering approaches aimed at designing redox-active proteins for diverse biotechnological applications.


Subject(s)
Bacterial Proteins/chemistry , Cyanobacteria/enzymology , Disulfides/chemistry , Flavin-Adenine Dinucleotide/chemistry , Oxidoreductases/chemistry , Synechocystis/enzymology , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Biocatalysis , Cell Membrane/chemistry , Cell Membrane/enzymology , Crystallography, X-Ray , Cyanobacteria/genetics , Disulfides/metabolism , Flavin-Adenine Dinucleotide/metabolism , Gene Expression , Kinetics , Models, Molecular , Oxidoreductases/genetics , Oxidoreductases/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Structural Homology, Protein , Substrate Specificity , Synechocystis/genetics , Thioredoxin-Disulfide Reductase/chemistry , Thioredoxin-Disulfide Reductase/genetics , Thioredoxin-Disulfide Reductase/metabolism
6.
Bull Math Biol ; 82(1): 3, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31919660

ABSTRACT

The asymptotes and transition points of the net CO2 assimilation (A/Ci) rate curves of the steady-state Farquhar-von Caemmerer-Berry (FvCB) model for leaf photosynthesis of C3 plants are examined in a theoretical study, which begins from the exploration of the standard equations of hyperbolae after rotating the coordinate system. The analysis of the A/Ci quadratic equations of the three limitation states of the FvCB model-abbreviated as Ac, Aj and Ap-allows us to conclude that their oblique asymptotes have a common slope that depends only on the mesophyll conductance to CO2 diffusion (gm). The limiting values for the transition points between any two states of the three limitation states c, j and p do not depend on gm, and the results are therefore valid for rectangular and non-rectangular hyperbola equations of the FvCB model. The analysis of the variation of the slopes of the asymptotes with gm casts doubts about the fulfilment of the steady-state conditions, particularly, when the net CO2 assimilation rate is inhibited at high CO2 concentrations. The application of the theoretical analysis to extended steady-state FvCB models, where the hyperbola equations of Ac, Aj and Ap are modified to accommodate nitrogen assimilation and amino acids export via the photorespiratory pathway, is also discussed.


Subject(s)
Photosynthesis , Plant Leaves , Diffusion , Fruit/metabolism , Mathematical Concepts , Models, Biological , Physical Phenomena , Plant Leaves/metabolism
7.
Molecules ; 24(13)2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31266247

ABSTRACT

A chemiluminescence probe for singlet oxygen 1O2 (SOCL) was investigated in phosphate buffer saline (PBS), either in the absence of proteins or containing bovine serum albumin (BSA). In the protein-free PBS, the reactivity of SOCL for methylene blue (MB)-photosensitized 1O2 was found to be moderate or low. The reaction yield increased with temperature and/or concentration of dissolved molecular oxygen. Unexpectedly, the presence of BSA boosted both the emissive nature and the thermal stability of the phenoxy-dioxetane intermediate formed in the chemiexcitation pathway. Isothermal titration calorimetry showed that SOCL has a moderate binding affinity for BSA and that entropy forces drive the formation of the SOCL-BSA complex. A model with two identical and independent binding sites was used to fit the binding isotherm data. Co-operative binding was observed when MB was present. Local viscosity factors and/or conformational restrictions of the BSA-bound SOCL phenoxy-dioxetane were proposed to contribute to the formation of the highly emissive benzoate ester during the chemically initiated electron exchange luminescence (CIEEL) process. These results led us to conclude that hydrophobic interactions of the SOCL with proteins can modify the emissive nature of its phenoxy-dioxetane, which should be taken into account when using SOCL or its cell-penetrating peptide derivative in living cells.


Subject(s)
Luminescent Measurements , Models, Chemical , Models, Molecular , Molecular Probes/chemistry , Serum Albumin, Bovine/chemistry , Singlet Oxygen/chemistry , Animals , Cattle
9.
Anal Biochem ; 519: 27-29, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27965064

ABSTRACT

Oxygen radical absorbance capacity (ORAC) assay in 96-well multi-detection plate readers is a rapid method to determine total antioxidant capacity (TAC) in biological samples. A disadvantage of this method is that the antioxidant inhibition reaction does not start in all of the 96 wells at the same time due to technical limitations when dispensing the free radical-generating azo initiator 2,2'-azobis (2-methyl-propanimidamide) dihydrochloride (AAPH). The time delay between wells yields a systematic error that causes statistically significant differences in TAC determination of antioxidant solutions depending on their plate position. We propose two alternative solutions to avoid this AAPH-dependent error in ORAC assays.


Subject(s)
Amidines/chemistry , Antioxidants/analysis , Biological Assay/methods , Oxygen Radical Absorbance Capacity , Ascorbic Acid/chemistry , Chromans/chemistry , Fluorescence , Gallic Acid/chemistry , Oxidants/chemistry , Reactive Oxygen Species/chemistry
11.
J Exp Bot ; 65(12): 3081-95, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24723397

ABSTRACT

Light-grown Arabidopsis thaliana cell suspension culture (ACSC) were subjected to mild photooxidative damage with Rose Bengal (RB) with the aim of gaining a better understanding of singlet oxygen-mediated defence responses in plants. Additionally, ACSC were treated with H2O2 at concentrations that induced comparable levels of protein oxidation damage. Under low to medium light conditions, both RB and H2O2 treatments activated transcriptional defence responses and inhibited photosynthetic activity, but they differed in that programmed cell death (PCD) was only observed in cells treated with RB. When dark-grown ACSC were subjected to RB in the light, PCD was suppressed, indicating that the singlet oxygen-mediated signalling pathway in ACSC requires functional chloroplasts. Analysis of up-regulated transcripts in light-grown ACSC, treated with RB in the light, showed that both singlet oxygen-responsive transcripts and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present. A co-regulation analysis proved that ACSC treated with RB exhibited higher correlation with the conditional fluorescence (flu) mutant than with other singlet oxygen-producing mutants or wild-type plants subjected to high light. However, there was no evidence for the up-regulation of EDS1, suggesting that activation of PCD was not associated with the EXECUTER- and EDS1-dependent signalling pathway described in the flu mutant. Indigo Carmine and Methylene Violet, two photosensitizers unable to enter chloroplasts, did not activate transcriptional defence responses in ACSC; however, whether this was due to their location or to their inherently low singlet oxygen quantum efficiencies was not determined.


Subject(s)
Apoptosis , Arabidopsis/physiology , Chloroplasts/metabolism , Rose Bengal/metabolism , Arabidopsis/genetics , Cells, Cultured , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Light , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Array Analysis , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Signal Transduction , Singlet Oxygen/metabolism , Up-Regulation
12.
Methods Mol Biol ; 2798: 27-43, 2024.
Article in English | MEDLINE | ID: mdl-38587734

ABSTRACT

Singlet oxygen is a reactive oxygen species that causes oxidative damage to plant cells, but intriguingly it can also act as a signalling molecule to reprogram gene expression required to induce plant physiological/cellular responses. Singlet oxygen photosensitization in plants mainly occurs in chloroplasts after the molecular collision of ground-state molecular oxygen with triplet-excited-state chlorophyll. Singlet oxygen direct detection through phosphorescence emission in chloroplasts is a herculean task due to its extremely low luminescence quantum yield. Because of this, indirect alternative methods have been developed for its detection in biological systems, for example, by measuring the changes in the EPR signal or fluorescence intensity of singlet oxygen reaction-based probes. The singlet oxygen chemiluminescence (SOCL) is a chemiluminescence probe with high sensitivity and selectivity towards singlet oxygen and promising use to detect it in living cells without the inconvenience of low stability of the EPR signal of spin probes in the presence of redox compounds, spurious light scattering coming from the light source required for the excitation of fluorescence probes or the light emission of endogenous fluorescent molecules like chlorophyll in chloroplasts. The protocol presented in this chapter describes the first steps to characterizing singlet oxygen production within the biological system under study; this is accomplished through monitoring molecular oxygen consumption by SOCL using a Clark-type oxygen electrode and measuring the chemiluminescence generated by SOCL 1,2-dioxetane using a spectrofluorometer. For singlet oxygen detection within living cells, a version of SOCL with increased membrane permeability (SOCL-CPP) is described.


Subject(s)
Luminescence , Singlet Oxygen , Oxygen , Chlorophyll , Fluorescent Dyes
13.
Methods Mol Biol ; 2798: 11-26, 2024.
Article in English | MEDLINE | ID: mdl-38587733

ABSTRACT

Reactive oxygen species (ROS) are produced by energy transfer and electron transport in plant chloroplast thylakoids at non-toxic levels under normal growth conditions, but at threatening levels under adverse or fluctuating environmental conditions. Among chloroplast ROS, singlet oxygen and superoxide anion radical, respectively, produced by photosystem II (PSII) and PSI, are known to be the major ROS under several stress conditions. Both are very unlikely to diffuse out of chloroplasts, but they are instead capable of triggering ROS-mediated chloroplast operational retrograde signalling to activate defence gene expression in concert with hormones and other molecular compounds. Therefore, their detection, identification and localization in vivo or in biological preparations is a priority for a deeper understanding of their role in (concurrent) regulation of plant growth and defence responses. Here, we present two EPR spin traps, abbreviated as TEMPD-HCl and DEPMPO, to detect and identify ROS in complex systems, such as isolated thylakoids, together with some hints and cautions to perform reliable spin trapping experiments.


Subject(s)
Superoxides , Thylakoids , Singlet Oxygen , Reactive Oxygen Species , Spin Trapping , Anions
14.
AoB Plants ; 16(2): plae013, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38601215

ABSTRACT

Plants function in symbiosis with numerous microorganisms, which might contribute to their adaptation and performance. In this study, we tested whether fungal strains in symbiotic interaction with roots of Celtica gigantea, a wild grass adapted to nutrient-poor soils in semiarid habitats, could improve the field performance of the agricultural cereal tritordeum (Triticum durum × Hordeum chilense). Seedlings of tritordeum were inoculated with 12 different fungal strains isolated from roots of Celtica gigantea that were first proved to promote the growth of tritordeum plants under greenhouse conditions. The inoculated seedlings were transplanted to field plots at two locations belonging to different climatic zones in terms of mean temperatures and precipitation in the Iberian Peninsula. Only one strain, Diaporthe iberica T6, had a significant effect on plant height, number of tillers and grain yield in one location. This result showed a substantial divergence between the results of greenhouse and field tests. In terms of grain nutritional quality, several parameters were differentially affected at both locations: Diaporthe T6, Pleosporales T7, Zygomycota T29 and Zygomycota T80 increased the content of total carotenoids, mainly lutein, in the colder location; whereas gluten proteins increased with several treatments in the warmer location. In conclusion, early inoculation of tritordeum plants with fungal symbionts had substantial beneficial effects on subsequent plant growth and development in the field. Regarding grain nutritional quality, the effect of inoculation was affected by the agroclimatic differences between both field locations.

15.
Work ; 78(1): 55-72, 2024.
Article in English | MEDLINE | ID: mdl-38701166

ABSTRACT

BACKGROUND: The sculpting craft must adopt awkward postures that lead to musculoskeletal disorders (MSDs). OBJECTIVE: This study investigated the prevalence of musculoskeletal discomfort (MD) and its associations with postural risk factors, demographics, and work characteristics among sculptors. They were determined the differences between MDs during the weeks of the study. METHODS: A longitudinal study was conducted; MD was investigated using the Cornell Musculoskeletal Discomfort Questionnaire (CMDQ). Posture was assessed using the Rapid Upper Limb Assessment method (RULA). Multivariate logistic regression (MLR) models analyzed associations with different factors. ANOVA was used to test for differences in MD prevalence. RESULTS: The analysis included 585 responses by body region. The prevalence of MD was high in the lower and upper limbs among sculptors (67.6%), with the lower back, upper arm, neck, and knees being the four most affected regions. Gender (female) (OR = 2.15), marital status (married) (OR = 1.80), health risk (obesity), the dual of a secondary job (OR = 1.94), job stress (OR = 2.10), duration of work (OR = 2.01), and difficulty keeping up with work (OR = 2.00) were significant predictors contributing to the occurrence of MD in different body regions. Only shoulder MD prevalence showed significant differences between study weeks. CONCLUSIONS: Sculptors suffer from MD. Demographic and work characteristic factors influence MD prevalence. Postural training, improved adaptation of work organization, and intervention guidance on ergonomic risks may reduce the prevalence of MD and the risk of MSDs in this population.


Subject(s)
Musculoskeletal Diseases , Humans , Male , Female , Risk Factors , Adult , Mexico/epidemiology , Musculoskeletal Diseases/epidemiology , Musculoskeletal Diseases/etiology , Prevalence , Middle Aged , Longitudinal Studies , Surveys and Questionnaires , Posture/physiology , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Logistic Models
16.
J Bacteriol ; 195(8): 1727-34, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23396908

ABSTRACT

Chlorosomes are large light-harvesting complexes found in three phyla of anoxygenic photosynthetic bacteria. Chlorosomes are primarily composed of self-assembling pigment aggregates. In addition to the main pigment, bacteriochlorophyll c, d, or e, chlorosomes also contain variable amounts of carotenoids. Here, we use X-ray scattering and electron cryomicroscopy, complemented with absorption spectroscopy and pigment analysis, to compare the morphologies, structures, and pigment compositions of chlorosomes from Chloroflexus aurantiacus grown under two different light conditions and Chlorobaculum tepidum. High-purity chlorosomes from C. aurantiacus contain about 20% more carotenoid per bacteriochlorophyll c molecule when grown under low light than when grown under high light. This accentuates the light-harvesting function of carotenoids, in addition to their photoprotective role. The low-light chlorosomes are thicker due to the overall greater content of pigments and contain domains of lamellar aggregates. Experiments where carotenoids were selectively extracted from intact chlorosomes using hexane proved that they are located in the interlamellar space, as observed previously for species belonging to the phylum Chlorobi. A fraction of the carotenoids are localized in the baseplate, where they are bound differently and cannot be removed by hexane. In C. tepidum, carotenoids cannot be extracted by hexane even from the chlorosome interior. The chemical structure of the pigments in C. tepidum may lead to π-π interactions between carotenoids and bacteriochlorophylls, preventing carotenoid extraction. The results provide information about the nature of interactions between bacteriochlorophylls and carotenoids in the protein-free environment of the chlorosome interior.


Subject(s)
Carotenoids/chemistry , Chloroflexus/metabolism , Light , Phycobiliproteins/chemistry , Phycobiliproteins/physiology , Bacterial Chromatophores , Carotenoids/metabolism , Chloroflexus/cytology , Molecular Structure , Organelles/physiology , Pigments, Biological , X-Ray Diffraction
17.
Front Plant Sci ; 14: 1118698, 2023.
Article in English | MEDLINE | ID: mdl-36818856

ABSTRACT

Functional symbiosis with fungal endophytes can help plants adapt to environmental stress. Diaporthe atlantica is one of the most abundant fungal taxa associated with roots of Festuca rubra subsp. pruinosa, a grass growing in sea cliffs. This study aimed to investigate the ability of a strain of this fungus to ameliorate the impact of drought stress on tomato plants. In a greenhouse experiment, tomato plants were inoculated with Diaporthe atlantica strain EB4 and exposed to two alternative water regimes: well-watered and drought stress. Several physiological and biochemical plant parameters were evaluated. Inoculation with Diaporthe promoted plant growth in both water treatments. A significant interactive effect of Diaporthe-inoculation and water-regime showed that symbiotic plants had higher photosynthetic capacity, water-use efficiency, nutrient uptake (N, P, K, Fe and Zn), and proline content under drought stress, but not under well-watered conditions. In addition, Diaporthe improved the enzymatic antioxidant response of plants under drought, through an induced mechanism, in which catalase activity was modulated and conferred protection against reactive oxygen species generation during stress. The results support that Diaporthe atlantica plays a positive role in the modulation of tomato plant responses to drought stress by combining various processes such as improving photosynthetic capacity, nutrient uptake, enzymatic antioxidant response and osmo-protectant accumulation. Thus, drought stress in tomato can be enhanced with symbiotic fungi.

18.
Work ; 75(1): 303-314, 2023.
Article in English | MEDLINE | ID: mdl-36591682

ABSTRACT

BACKGROUND: The effects of performing occupational tasks that demand physical and mental efforts in combined and simultaneous approaches are unknown, especially when pushing force is analyzed as a physical effort and solving arithmetic problems as a mental effort. OBJECTIVE: In this study, physical and mental demands were simulated in a lab environment to assess the workload. METHODS: Using a push force dynamometer, the maximum push force strength of each participant was recorded, and the physical demand was simulated exerting the push force in low, medium, and high levels. Mental demands were simulated solving arithmetic tasks in low, medium, and high levels. Two experimental conditions were defined: (1) task with combined physical and mental workload (performing physical demands first and mental demands after) and (2) task in a simultaneous way (performing both demands at the same time. NASA-TLX Traditional and RAW were applied to assess the workload. RESULTS: The time to complete the tasks was significantly longer in the combined than the simultaneous approach, and performance was significantly higher in the combined than the simultaneous tasks. CONCLUSION: The combined approach obtained better results than simultaneous and Traditional NASA-TLX presented a significantly higher level of global workload index than RAW.


Subject(s)
Task Performance and Analysis , Workload , Humans , Physical Exertion
19.
Int J Occup Saf Ergon ; 29(1): 90-98, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35232326

ABSTRACT

A study was undertaken in which the handgrip strength in three arm positions above the shoulder was measured to compare handgrip strength when arm support is used and when it is not used. Grip forces were generated in pairs of flexion angles, corresponding to shoulder and elbow at 90°-90°, 135°-45° and 160°-20°. Thirty-two participants completed the present study; 23 men and nine women with a median age of 23.1 (SD ±3.6) years. A manual handgrip dynamometer (0-90 kg) and an adjustable angle arm support (AAAS) were used during the data collection. Two-way analysis of variance (ANOVA) for repeated measurements indicates a significant effect of the AAAS factor on the handgrip strength, as well as on the AAAS × angle interaction. However, there is no significant effect of the angle factor on the AAAS × angle interaction.


Subject(s)
Hand Strength , Shoulder , Male , Humans , Female , Young Adult , Adult , Upper Extremity , Elbow , Posture
20.
Work ; 75(4): 1265-1275, 2023.
Article in English | MEDLINE | ID: mdl-36710696

ABSTRACT

BACKGROUND: Today's work environments have high cognitive demands, and mental workload is one of the main causes of work stress, human errors, and accidents. While several mental workload studies have compared the mental workload perceived by groups of experienced participants to that perceived by novice groups, no comparisons have been made between the same individuals performing the same tasks at different times. OBJECTIVE: This work aims to compare NASA Task Load Index (NASA-TLX) to Workload Profile (WP) in terms of their sensitivity. The comparison considers the impact of experience and task differentiation in the same individual once a degree of experience has been developed in the execution of the same tasks. It also considers the acceptability and intrusivity of the techniques. METHODS: The sample consisted of 30 participants who performed four tasks in two sessions. The first session was performed when participants had no experience; the second session was performed after a time of practice. Mental workload was assessed after each session. Statistical methods were used to compare the results. RESULTS: The NASA-TLX proved to be more sensitive to experience, while the WP showed greater sensitivity to task differentiation. In addition, while both techniques featured a similar degree of intrusivity, the NASA-TLX received greater acceptability. CONCLUSION: The acceptability of WP is low due to the high complexity of its dimensions and clarifying explanations of these may be necessary to increase acceptability. Future research proposals should be expanded to consider mental workload when designing work environments in current manufacturing environments.


Subject(s)
Occupational Stress , Task Performance and Analysis , United States , Humans , United States National Aeronautics and Space Administration , Workload/psychology
SELECTION OF CITATIONS
SEARCH DETAIL