Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Chem Biodivers ; 21(4): e202301978, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38379213

ABSTRACT

The comparative metabolic profiling and their biological properties of eight extracts obtained from diverse parts (leaves, flowers, roots) of the medicinal plant Flourensia fiebrigii S.F. Blake, a chemotype growing in highland areas (2750 m a.s.l.) of northwest Argentina, were investigated. The extracts were analysed by GC-MS and UHPLC-MS/MS. GC-MS analysis revealed the presence of encecalin (relative content: 24.86 %) in ethereal flower extract (EF) and this benzopyran (5.93 %) together sitosterol (11.35 %) in the bioactive ethereal leaf exudate (ELE). By UHPLC-MS/MS the main compounds identified in both samples were: limocitrin, (22.31 %), (2Z)-4,6-dihydroxy-2-[(4-hydroxy-3,5-dimethoxyphenyl)methylidene]-1-benzofuran-3-one (21.31 %), isobavachin (14.47 %), naringenin (13.50 %), and sternbin, (12.49 %). Phytocomplexes derived from aerial parts exhibited significant activity against biofilm production of Pseudomonas aeruginosa and Staphylococcus aureus, reaching inhibitions of 74.7-99.9 % with ELE (50 µg/mL). Notably, the extracts did not affect nutraceutical and environmental bacteria, suggesting a selective activity. ELE also showed the highest reactive species scavenging ability. This study provides valuable insights into the potential applications of this chemotype.


Subject(s)
Asteraceae , Tandem Mass Spectrometry , Gas Chromatography-Mass Spectrometry , Plant Extracts/pharmacology , Plant Extracts/metabolism , Chromatography, High Pressure Liquid , Plant Leaves/metabolism , Asteraceae/metabolism
2.
Molecules ; 26(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066034

ABSTRACT

The chemical composition of three Citrus limon oils: lemon essential oil (LEO), lemon terpenes (LT) and lemon essence (LE), and their influence in the virulence factors production and motility (swarming and swimming) of two Pseudomonas aeruginosa strains (ATCC 27853 and a multidrug-resistant HT5) were investigated. The main compound, limonene, was also tested in biological assays. Eighty-four compounds, accounting for a relative peak area of 99.23%, 98.58% and 99.64%, were identified by GC/MS. Limonene (59-60%), γ-terpinene (10-11%) and ß-pinene (7-15%) were the main compounds. All lemon oils inhibited specific biofilm production and bacterial metabolic activities into biofilm in a dose-dependent manner (20-65%, in the range of 0.1-4 mg mL-1) of both strains. Besides, all samples inhibited about 50% of the elastase activity at 0.1 mg mL-1. Pyocyanin biosynthesis decreases until 64% (0.1-4 mg mL-1) for both strains. Swarming motility of P. aeruginosa ATCC 27853 was completely inhibited by 2 mg mL-1 of lemon oils. Furthermore, a decrease (29-55%, 0.1-4 mg mL-1) in the synthesis of Quorum sensing (QS) signals was observed. The oils showed higher biological activities than limonene. Hence, their ability to control the biofilm of P. aeruginosa and reduce the production of virulence factors regulated by QS makes lemon oils good candidates to be applied as preservatives in the food processing industry.


Subject(s)
Anti-Bacterial Agents/pharmacology , Citrus/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Quorum Sensing/drug effects , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Bicyclic Monoterpenes/chemistry , Bicyclic Monoterpenes/pharmacology , Biofilms/drug effects , Cyclohexane Monoterpenes/chemistry , Cyclohexane Monoterpenes/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Gas Chromatography-Mass Spectrometry , Limonene/chemistry , Limonene/pharmacology , Oils, Volatile/chemistry , Pancreatic Elastase/metabolism , Plant Oils/chemistry , Pseudomonas aeruginosa/metabolism , Pyocyanine/biosynthesis , Signal Transduction/drug effects , Virulence , Virulence Factors , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/pharmacology
3.
Biofouling ; 36(5): 597-609, 2020 05.
Article in English | MEDLINE | ID: mdl-32573275

ABSTRACT

This work investigated chloroform extracts from culture supernatants of two human probiotic bacteria, Lactobacillus casei CRL 431 and Lactobacillus acidophilus CRL 730 for the production of virulence factors and quorum sensing (QS) interference against three Pseudomonas aeruginosa strains. Both extracts inhibited biofilm biomass (up to 50%), biofilm metabolic activity (up to 39%), the production of the enzyme elastase (up to 63%) and pyocyanin (up to 77%), and decreased QS, without presenting any antibacterial acgivity. In addition, the chloroform extracts of both strains disrupted preformed biofilms of the three strains of P. aeruginosa analyzed (up to 40%). GC-MS analysis revealed that the major compounds detected in the bioactive extracts were four diketopiperazines. This study suggests that the metabolites of L. casei and L. acidophilus could be a promising alternative to combat the pathogenicity of P. aeruginosa.


Subject(s)
Probiotics , Pseudomonas aeruginosa , Quorum Sensing/drug effects , Anti-Bacterial Agents/pharmacology , Biofilms , Humans , Virulence , Virulence Factors
4.
Anaerobe ; 28: 8-12, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24785349

ABSTRACT

The mutagen binding ability of the goat probiotics (Lactobacillus reuteri DDL 19, Lactobacillus alimentarius DDL 48, Enterococcus faecium DDE 39, and Bifidobacterium bifidum DDBA) was evaluated. The oral administration of these probiotics reduced fecal mutagens and intestinal cancer markers in goats. Secondly, the effects of probiotics against the mutagenesis induced by sodium azide (SA), and Benzopyrene (B[α]P) by performing the modified Ames test using Salmonella typhimurium TA 100 was investigated. The capacity to bind benzopyrene and the stability of the bacterial-mutagen complex was analyzed by HPLC. The dismutagenic potential against both mutagens was proportional to probiotic concentration. Results showed that probiotic antimutagenic capacity against SA was ranging from 13 to 78%. The mixture of four goat probiotics (MGP) displayed higher antimutagenic activity against SA than any individual strains at the same cell concentration. This study shows that the highest diminution of mutagenicity in presence of B[α]P (74%) was observed in presence of MGP. The antimutagenic activity of nearly all the individual probiotic and the MGP were in concordance with the B[α]P binding determined by HPLC. According to our results, the B[α]P binding to probiotic was irreversible still after being washed with DMSO solution. The stability of the toxic compounds-bacterial cell binding is a key consideration when probiotic antimutagenic property is evaluated. MGP exhibits the ability to bind and detoxify potent mutagens, and this property can be useful in supplemented foods for goats since it can lead to the removal of potent mutagens and protect and enhance ruminal health and hence food safety of consumers.


Subject(s)
Bifidobacterium/metabolism , Enterococcus faecium/metabolism , Limosilactobacillus reuteri/metabolism , Mutagens/metabolism , Probiotics/metabolism , Animals , Benzopyrenes/metabolism , Biotransformation , Chromatography, High Pressure Liquid , Goats , Mutation Rate , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Sodium Azide/metabolism
5.
Antibiotics (Basel) ; 13(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38666973

ABSTRACT

The escalating prevalence of antibiotic-resistant bacteria poses a grave threat to human health, necessitating the exploration of novel alternatives to conventional antibiotics. This study investigated the impact of extracts derived from the supernatant of four lactic acid bacteria strains on factors contributing to the pathogenicity of three Staphylococcus aureus strains. The study evaluated the influence of lactic acid bacteria supernatant extracts on the growth, biofilm biomass formation, biofilm metabolic activity, and biofilm integrity of the S. aureus strains. Additionally, the impact on virulence factors (hemolysin and coagulase) was examined. Gas chromatography coupled with mass spectrometry was used to identify the bioactive compounds in the extracts, while molecular docking analyses explored potential interactions. Predominantly, the extracts contain eight 2,5-diketopiperazines, which are cyclic forms of peptides. The extracts demonstrated inhibitory effects on biofilm formation, the ability to disrupt mature biofilms, and reduce the biofilm cell metabolic activity of the S. aureus strains. Furthermore, they exhibited the ability to inhibit α-hemolysin production and reduce coagulase activity. An in silico docking analysis reveals promising interactions between 2,5-diketopiperazines and key proteins (SarA and AgrA) in S. aureus, confirming their antivirulence and antibiofilm activities. These findings suggest that 2,5-diketopiperazines could serve as a promising lead compound in the fight against antibiotic-resistant S. aureus.

6.
Foods ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928737

ABSTRACT

Hydroalcoholic extracts from Malbec and Torrontés wine pomaces (Vitis vinifera L.) originating from the high-altitude vineyards of Argentina's Calchaquí Valleys were characterized. Total phenolics, hydroxycinnamic acids, orthodiphenols, anthocyanins, non-flavonoid phenolics, total flavonoids, flavones/flavonols, flavanones/dihydroflavonols, and tannins were quantified through spectrophotometric methods, with the Malbec extract exhibiting higher concentrations in most of phytochemical groups when compared to Torrontés. HPLC-DAD identified more than 30 phenolic compounds in both extracts. Malbec displayed superior antiradical activity (ABTS cation, nitric oxide, and superoxide anion radicals), reduction power (iron, copper, and phosphomolybdenum), hypochlorite scavenging, and iron chelating ability compared to Torrontés. The cytotoxicity assessments revealed that Torrontés affected the viability of HT29-MTX and Caco-2 colon cancer cells by 70% and 50%, respectively, at the highest tested concentration (1 mg/mL). At the same time, both extracts did not demonstrate acute toxicity in Artemia salina or in red blood cell assays at 500 µg/mL. Both extracts inhibited the lipoxygenase enzyme (IC50: 154.7 and 784.7 µg/mL for Malbec and Torrontés), with Malbec also reducing the tyrosinase activity (IC50: 89.9 µg/mL), and neither inhibited the xanthine oxidase. The substantial phenolic content and diverse biological activities in the Calchaquí Valleys' pomaces underline their potentialities to be valorized for pharmaceutical, cosmetic, and food industries.

7.
Article in English | MEDLINE | ID: mdl-30105081

ABSTRACT

In this work, we intended to inhibit the biofilm synthesis and the metabolism of Gram-positive and Gram-negative bacteria using two highly available wastes (stem and marc) obtained after the manufacturing of Torrontes wine at Cafayate, Argentina. Wine wastes contain a significant amount of bioactive compounds, mainly phenolic compounds, which makes them a potential source of compounds with beneficial properties to human health, as they could inhibit the virulence of pathogenic bacteria or protect the tissue against oxidative stress. Marc and stem extracts of Torrontes wine were evaluated for their ability to inhibit the metabolism and biofilm production of Pseudomonas aeruginosa and Staphylococcus aureus strains. The phytochemical composition and antioxidant activity of these extracts were also determined. The methanol and ethyl acetate extracts, which contained the highest amount of total polyphenolic, exhibited the highest scavenging capacity of ABTS and nitric oxide and the strongest Fe3+ reducing power and exhibited the highest level of inhibition of the biofilm formation and of the metabolic activity in bacterial biofilm. We also noticed a positive correlation between phenolic compounds content, the antioxidant activity, and the anti-biofilm capacity of the winemaking wastes. These results display the potentiality of wine wastes to prevent or reduce the formation of biofilm. Moreover, their abundance makes them an attractive and affordable source of antibiofilm and antioxidant agents.

8.
Gene ; 301(1-2): 61-6, 2002 Nov 13.
Article in English | MEDLINE | ID: mdl-12490324

ABSTRACT

The genes implicated in the catabolism of the amino acid arginine by Lactobacillus hilgardii X(1)B were investigated to assess the potential for formation of ethyl carbamate precursors in wine. L. hilgardii X(1)B can use arginine via the arginine deiminase pathway. The complete nucleotide sequence of the arc genes involved in this pathway has been determined. They are clustered in an operon-like structure in the order arcABC. No evidence was found for the presence of a homologue of the arcD gene, coding for the arginine/ornithine antiporter. The arc genes have been expressed in Escherichia coli resulting in arginine deiminase (ArcA), ornithine carbamoyltransfera (ArcB) and carbamate kinase (ArcC) activities. The results indicate the need for caution in the selection of lactic acid bacteria for conducting malolactic fermentation in wine since arginine degradation could result in high amounts of ethyl carbamate.


Subject(s)
Hydrolases/genetics , Lactobacillus/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Gene Expression Regulation, Enzymologic , Gene Order , Genes, Bacterial/genetics , Hydrolases/metabolism , Lactobacillus/enzymology , Molecular Sequence Data , Multigene Family/genetics , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Phosphotransferases (Carboxyl Group Acceptor)/genetics , Phosphotransferases (Carboxyl Group Acceptor)/metabolism , Sequence Analysis, DNA
9.
J Biosci Bioeng ; 110(5): 537-40, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20598940

ABSTRACT

The application of potentially beneficial microorganisms to increase host defense is a new trend to increase health benefits. In this paper the first specific host probiotics for goats from a mixture isolated from healthy animals (Lactobacillus reuteri DDL 19, Lactobacillus alimentarius DDL 48, Enterococcus faecium DDE 39 and Bifidobacterium bifidum DDBA) was assayed. The effect of probiotic oral administration on goats' weight, gut microbiota, as well as on the production of mutagen compounds and their indicator (putrescine), were evaluated. The probiotic supplement was able to modify microflora balance by reducing Enterobacteria like Salmonella/Shigella (1.09 and 1.21 log CFU/g feces, respectively) and increasing lactic acid bacteria and Bifidobacteria (1.67 and 2.34 log CFU/g feces, respectively). The probiotics administration was correlated with a ten time diminution of fecal putrescine (cancer and bacterial disease marker) and a decrease of 60% mutagen fecal concentration, indicating the protective effect of the treatment. Additionally, a significant increase in ruminant weight was observed after probiotic administration. These results are encouraging towards the use of probiotic mixtures as functional food for goats.


Subject(s)
Goats/metabolism , Goats/microbiology , Mutagens/metabolism , Probiotics/administration & dosage , Administration, Oral , Animals , Bacterial Load , Biotechnology , Feces/chemistry , Feces/microbiology , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Metagenome , Putrescine/metabolism
10.
J Biosci Bioeng ; 106(4): 363-7, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19000612

ABSTRACT

Sugar production from sugarcane generates residual products, currently, many of which are waste products. At the same time, introduction of probiotic bacteria to food animals needs an economical production medium. Fermentation of sugarcane blunting, an industrial residue, inoculated with ruminant probiotic bacteria was investigated. Fermentation was carried out using native flora (NF) alone, NF plus a goat probiotic lactic acid bacterium (LAB), and NF plus goat probiotic co-inoculated with two LAB isolated from sugarcane. Survival of microorganisms and metabolite produce were monitored. In the inoculated samples, pH was lower, dry matter was >30%, and Enterobacteriaceae and fungus decreased when compared to natural fermentation. The LAB inoculated grew and multiplied during fermentation. All beneficial changes were more quickly in the co-inoculated samples. The results presented indicate that sugarcane blunting can be used as a medium for introduction of ruminant probiotic bacteria. Fermentation of blunting can prolong shelf life and increase microbiological safety.


Subject(s)
Probiotics/chemistry , Saccharum/chemistry , Animal Feed , Animals , Biotechnology/methods , Enterobacteriaceae/metabolism , Fermentation , Food Microbiology , Hydrogen-Ion Concentration , Lactobacillus/metabolism , Ruminants , Saccharum/metabolism , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL