Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters

Country/Region as subject
Publication year range
1.
FASEB J ; 38(6): e23505, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38507255

ABSTRACT

Aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) are distinct disorders leading to left ventricular hypertrophy (LVH), but whether cardiac metabolism substantially differs between these in humans remains to be elucidated. We undertook an invasive (aortic root, coronary sinus) metabolic profiling in patients with severe AS and HCM in comparison with non-LVH controls to investigate cardiac fuel selection and metabolic remodeling. These patients were assessed under different physiological states (at rest, during stress induced by pacing). The identified changes in the metabolome were further validated by metabolomic and orthogonal transcriptomic analysis, in separately recruited patient cohorts. We identified a highly discriminant metabolomic signature in severe AS in all samples, regardless of sampling site, characterized by striking accumulation of long-chain acylcarnitines, intermediates of fatty acid transport across the inner mitochondrial membrane, and validated this in a separate cohort. Mechanistically, we identify a downregulation in the PPAR-α transcriptional network, including expression of genes regulating fatty acid oxidation (FAO). In silico modeling of ß-oxidation demonstrated that flux could be inhibited by both the accumulation of fatty acids as a substrate for mitochondria and the accumulation of medium-chain carnitines which induce competitive inhibition of the acyl-CoA dehydrogenases. We present a comprehensive analysis of changes in the metabolic pathways (transcriptome to metabolome) in severe AS, and its comparison to HCM. Our results demonstrate a progressive impairment of ß-oxidation from HCM to AS, particularly for FAO of long-chain fatty acids, and that the PPAR-α signaling network may be a specific metabolic therapeutic target in AS.


Subject(s)
Aortic Valve Stenosis , Cardiomyopathy, Hypertrophic , Humans , Peroxisome Proliferator-Activated Receptors , Cardiomyopathy, Hypertrophic/genetics , Hypertrophy, Left Ventricular/genetics , Aortic Valve Stenosis/genetics , Fatty Acids/metabolism
2.
J Cardiovasc Magn Reson ; 24(1): 36, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35692049

ABSTRACT

BACKGROUND: The right ventricle (RV) in hypertrophic cardiomyopathy (HCM) tends to be neglected, as previous efforts have predominantly focused on examining the prognostic value of left ventricular (LV) abnormalities. The objectives of this study were to assess RV function in HCM, changes over time, and association with clinical outcomes. METHODS: Two hundred and ninety HCM patients with preserved LV ejection fraction (LVEF ≥ 55%) and 30 age- and sex-matched controls underwent cardiovascular magnetic resonance (CMR). All patients were followed up for clinical events for a median duration of 4.4 years. Sixty-three patients had a follow-up CMR undertaken at a median interval of 5.4 years. Main study measures and outcomes were RV function (RV ejection fraction (RVEF) and RV strain) at baseline, temporal changes in RV function over time and prognostic value of RV dysfunction for predicting cardiovascular outcomes in HCM. RESULTS: When compared to controls, HCM patients exhibited lower RV and LV peak global longitudinal systolic strains on feature-tracking analysis of cine images, while RVEF and LVEF were within the normal range. On follow-up CMR, both RV and LV strain parameters decreased over time. RVEF decreased at follow-up (65 ± 7% to 62 ± 7%, P < 0.001) but the change in LVEF was not significant (68 ± 10% to 66 ± 8%, P = 0.30). On clinical follow up, reduced RVEF was an independent predictor of non-sustained ventricular tachycardia (NSVT) [HR 1.10 (95% CI 1.06-1.15), P < 0.001] and composite cardiovascular events (NSVT, stroke, heart failure hospitalisation and cardiovascular death) [HR 1.07 (95% CI 1.03-1.10), P < 0.001]. RV longitudinal strain was an independent predictor of NSVT [HR 1.05 (95% CI 1.01-1.09), P = 0.029]. Patients with RVEF < 55% showed an increased risk of NSVT and composite cardiovascular events. In contrast, LVEF and LV global longitudinal strain were not predictive of such events on multivariable analysis. CONCLUSIONS: In HCM, RV function, including RV strain, and LV strain decrease over time despite preserved LVEF. Reduction in RV but not LV function is associated with adverse cardiovascular outcomes. Assessing RV function in early HCM disease might have a role in risk stratification to prevent future cardiovascular events.


Subject(s)
Cardiomyopathy, Hypertrophic , Ventricular Function, Right , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/diagnostic imaging , Humans , Magnetic Resonance Imaging, Cine/methods , Predictive Value of Tests , Stroke Volume , Ventricular Function, Left
3.
J Cardiovasc Magn Reson ; 23(1): 109, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34635131

ABSTRACT

BACKGROUND: Left atrial (LA) size and function are known predictors of new onset atrial fibrillation (AF) in hypertrophic cardiomyopathy (HCM) patients. Components of LA deformation including reservoir, conduit, and booster function provide additional information on atrial mechanics. Whether or not LA deformation can augment our ability to predict the risk of new onset AF in HCM patients beyond standard measurements is unknown. METHODS: We assessed LA size, function, and deformation on cardiovascular magnetic resonance (CMR) in 238 genotyped HCM patients and compared this with twenty age, sex, blood pressure and body mass index matched control subjects. We further evaluated the determinants of new onset AF in HCM patients. RESULTS: Compared to control subjects, HCM patients had higher LA antero-posterior diameter, lower LA ejection fraction and lower LA reservoir (19.9 [17.1, 22.2], 21.6 [19.9, 22.9], P = 0.047) and conduit strain (10.6 ± 4.4, 13.7 ± 3.3, P = 0.002). LA booster strain did not differ between healthy controls and HCM patients, but HCM patients who developed new onset AF (n = 33) had lower booster strain (7.6 ± 3.3, 9.5 ± 3.0, P = 0.001) than those that did not (n = 205). In separate multivariate models, age, LA ejection fraction, and LA booster and reservoir strain were each independent determinants of AF. Age ≥ 55 years was the strongest determinant (HR 6.62, 95% CI 2.79-15.70), followed by LA booster strain ≤ 8% (HR 3.69, 95% CI 1.81-7.52) and LA reservoir strain ≤ 18% (HR 2.56, 95% CI 1.24-5.27). Conventional markers of HCM phenotypic severity, age and sudden death risk factors were associated with LA strain components. CONCLUSIONS: LA strain components are impaired in HCM and, together with age, independently predicted the risk of new onset AF. Increasing age and phenotypic severity were associated with LA strain abnormalities. Our findings suggest that the routine assessment of LA strain components and consideration of age could augment LA size in predicting risk of AF, and potentially guide prophylactic anticoagulation use in HCM.


Subject(s)
Atrial Fibrillation , Cardiomyopathy, Hypertrophic , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/etiology , Cardiomyopathy, Hypertrophic/diagnostic imaging , Heart Atria/diagnostic imaging , Humans , Magnetic Resonance Spectroscopy , Middle Aged , Predictive Value of Tests
4.
J Cardiovasc Magn Reson ; 20(1): 88, 2018 12 24.
Article in English | MEDLINE | ID: mdl-30580760

ABSTRACT

BACKGROUND: Heart failure (HF) is characterized by altered myocardial substrate metabolism which can lead to myocardial triglyceride accumulation (steatosis) and lipotoxicity. However its role in mild HF with preserved ejection fraction (HFpEF) is uncertain. We measured myocardial triglyceride content (MTG) in HFpEF and assessed its relationships with diastolic function and exercise capacity. METHODS: Twenty seven HFpEF (clinical features of HF, left ventricular EF >50%, evidence of mild diastolic dysfunction and evidence of exercise limitation as assessed by cardiopulmonary exercise test) and 14 controls underwent 1H-cardiovascular magnetic resonance spectroscopy (1H-CMRS) to measure MTG (lipid/water, %), 31P-CMRS to measure myocardial energetics (phosphocreatine-to-adenosine triphosphate - PCr/ATP) and feature-tracking cardiovascular magnetic resonance (CMR) imaging for diastolic strain rate. RESULTS: When compared to controls, HFpEF had 2.3 fold higher in MTG (1.45 ± 0.25% vs. 0.64 ± 0.16%, p = 0.009) and reduced PCr/ATP (1.60 ± 0.09 vs. 2.00 ± 0.10, p = 0.005). HFpEF had significantly reduced diastolic strain rate and maximal oxygen consumption (VO2 max), which both correlated significantly with elevated MTG and reduced PCr/ATP. On multivariate analyses, MTG was independently associated with diastolic strain rate while diastolic strain rate was independently associated with VO2 max. CONCLUSIONS: Myocardial steatosis is pronounced in mild HFpEF, and is independently associated with impaired diastolic strain rate which is itself related to exercise capacity. Steatosis may adversely affect exercise capacity by indirect effect occurring via impairment in diastolic function. As such, myocardial triglyceride may become a potential therapeutic target to treat the increasing number of patients with HFpEF.


Subject(s)
Energy Metabolism , Exercise Tolerance , Heart Failure/diagnostic imaging , Magnetic Resonance Imaging, Cine , Myocardial Contraction , Myocardium/metabolism , Triglycerides/metabolism , Ventricular Function, Left , Adenosine Triphosphate/metabolism , Aged , Biomarkers/metabolism , Biomechanical Phenomena , Case-Control Studies , Exercise Test , Female , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/physiopathology , Humans , Male , Middle Aged , Myocardium/pathology , Oxygen Consumption , Phosphocreatine/metabolism , Predictive Value of Tests , Prospective Studies , Proton Magnetic Resonance Spectroscopy , Severity of Illness Index
6.
Europace ; 20(suppl_3): iii102-iii112, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30476051

ABSTRACT

AIMS: To identify key structural and electrophysiological features explaining distinct electrocardiogram (ECG) phenotypes in hypertrophic cardiomyopathy (HCM). METHODS AND RESULTS: Human heart-torso anatomical models were constructed from cardiac magnetic resonance (CMR) images of HCM patients, representative of ECG phenotypes identified previously. High performance computing simulations using bidomain models were conducted to dissect key features explaining the ECG phenotypes with increased HCM Risk-SCD scores, namely Group 1A, characterized by normal QRS but inverted T waves laterally and coexistence of apical and septal hypertrophy; and Group 3 with marked QRS abnormalities (deep and wide S waves laterally) and septal hypertrophy. Hypertrophic cardiomyopathy abnormalities characterized from CMR, such as hypertrophy, tissue microstructure alterations, abnormal conduction system, and ionic remodelling, were selectively included to assess their influence on ECG morphology. Electrocardiogram abnormalities could not be explained by increased wall thickness nor by local conduction abnormalities associated with fibre disarray or fibrosis. Inverted T wave with normal QRS (Group 1A) was obtained with increased apico-basal repolarization gradient caused by ionic remodelling in septum and apex. Lateral QRS abnormalities (Group 3) were only recovered with abnormal Purkinje-myocardium coupling. CONCLUSION: Two ECG-based HCM phenotypes are explained by distinct mechanisms: ionic remodelling and action potential prolongation in hypertrophied apical and septal areas lead to T wave inversion with normal QRS complexes, whereas abnormal Purkinje-myocardial coupling causes abnormal QRS morphology in V4-V6. These findings have potential implications for patients' management as they point towards different arrhythmia mechanisms in different phenotypes.


Subject(s)
Action Potentials , Cardiomyopathy, Hypertrophic/diagnosis , Computer Simulation , Electrocardiography , Excitation Contraction Coupling , Heart Rate , Models, Cardiovascular , Myocardial Contraction , Purkinje Fibers/physiopathology , Cardiomyopathy, Hypertrophic/etiology , Cardiomyopathy, Hypertrophic/physiopathology , Humans , Magnetic Resonance Imaging , Phenotype , Predictive Value of Tests , Ventricular Remodeling
7.
Circulation ; 134(15): 1068-1081, 2016 Oct 11.
Article in English | MEDLINE | ID: mdl-27630135

ABSTRACT

BACKGROUND: Lone atrial fibrillation (AF) may reflect a subclinical cardiomyopathy that persists after sinus rhythm (SR) restoration, providing a substrate for AF recurrence. To test this hypothesis, we investigated the effect of restoring SR by catheter ablation on left ventricular (LV) function and energetics in patients with AF but no significant comorbidities. METHODS: Fifty-three patients with symptomatic paroxysmal or persistent AF and without significant valvular disease, uncontrolled hypertension, coronary artery disease, uncontrolled thyroid disease, systemic inflammatory disease, diabetes mellitus, or obstructive sleep apnea (ie, lone AF) undergoing ablation and 25 matched control subjects in SR were investigated. Magnetic resonance imaging quantified LV ejection fraction (LVEF), peak systolic circumferential strain (PSCS), and left atrial volumes and function, whereas phosphorus-31 magnetic resonance spectroscopy evaluated ventricular energetics (ratio of phosphocreatine to ATP). AF burden was determined before and after ablation by 7-day Holter monitoring; intermittent ECG event monitoring was also undertaken after ablation to investigate for asymptomatic AF recurrence. RESULTS: Before ablation, both LV function and energetics were significantly impaired in patients compared with control subjects (LVEF, 61% [interquartile range (IQR), 52%-65%] versus 71% [IQR, 69%-73%], P<0.001; PSCS, -15% [IQR, -11 to -18%] versus -18% [IQR, -17% to -19%], P=0.002; ratio of phosphocreatine to ATP, 1.81±0.35 versus 2.05±0.29, P=0.004). As expected, patients also had dilated and impaired left atria compared with control subjects (all P<0.001). Early after ablation (1-4 days), LVEF and PSCS improved in patients recovering SR from AF (LVEF, 7.0±10%, P=0.005; PSCS, -3.5±4.3%, P=0.001) but were unchanged in those in SR during both assessments (both P=NS). At 6 to 9 months after ablation, AF burden reduced significantly (from 54% [IQR, 1.5%-100%] to 0% [IQR 0%-0.1%]; P<0.001). However, LVEF and PSCS did not improve further (both P=NS) and remained impaired compared with control subjects (P<0.001 and P=0.003, respectively). Similarly, there was no significant improvement in atrial function from before ablation (P=NS), and this remained lower than in control subjects (P<0.001). The ratio of phosphocreatine to ATP was unaffected by heart rhythm during assessment and AF burden before ablation (both P=NS). It was unchanged after ablation (P=0.57), remaining lower than in control subjects regardless of both recovery of SR and freedom from recurrent AF (P=0.006 and P=0.002, respectively). CONCLUSIONS: Patients with lone AF have impaired myocardial energetics and subtle LV dysfunction, which do not normalize after ablation. These findings suggest that AF may be the consequence (rather than the cause) of an occult cardiomyopathy, which persists despite a significant reduction in AF burden after ablation.


Subject(s)
Atrial Fibrillation/complications , Atrial Fibrillation/physiopathology , Heart Failure/physiopathology , Myocardium/pathology , Ventricular Dysfunction, Left/complications , Ventricular Dysfunction, Left/physiopathology , Aged , Cardiomyopathies/complications , Catheter Ablation/adverse effects , Catheter Ablation/methods , Echocardiography/methods , Female , Heart Atria/pathology , Heart Atria/physiopathology , Heart Failure/pathology , Humans , Male , Middle Aged , Stroke Volume/physiology , Treatment Outcome , Ventricular Function, Left/physiology
10.
J Cardiovasc Magn Reson ; 19(1): 1, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28081721

ABSTRACT

BACKGROUND: Perfusion cardiovascular magnetic resonance (CMR) performed with inadequate adenosine stress leads to false-negative results and suboptimal clinical management. The recently proposed marker of adequate stress, the "splenic switch-off" sign, detects splenic blood flow attenuation during stress perfusion (spleen appears dark), but can only be assessed after gadolinium first-pass, when it is too late to optimize the stress response. Reduction in splenic blood volume during adenosine stress is expected to shorten native splenic T1, which may predict splenic switch-off without the need for gadolinium. METHODS: Two-hundred and twelve subjects underwent adenosine stress CMR: 1.5 T (n = 104; 75 patients, 29 healthy controls); 3 T (n = 108; 86 patients, 22 healthy controls). Native T1spleen was assessed using heart-rate-independent ShMOLLI prototype sequence at rest and during adenosine stress (140 µg/kg/min, 4 min, IV) in 3 short-axis slices (basal, mid-ventricular, apical). This was compared with changes in peak splenic perfusion signal intensity (ΔSIspleen) and the "splenic switch-off" sign on conventional stress/rest gadolinium perfusion imaging. T1spleen values were obtained blinded to perfusion ΔSIspleen, both were derived using regions of interest carefully placed to avoid artefacts and partial-volume effects. RESULTS: Normal resting splenic T1 values were 1102 ± 66 ms (1.5 T) and 1352 ± 114 ms (3 T), slightly higher than in patients (1083 ± 59 ms, p = 0.04; 1295 ± 105 ms, p = 0.01, respectively). T1spleen decreased significantly during adenosine stress (mean ΔT1spleen ~ -40 ms), independent of field strength, age, gender, and cardiovascular diseases. While ΔT1spleen correlated strongly with ΔSIspleen (rho = 0.70, p < 0.0001); neither indices showed significant correlations with conventional hemodynamic markers (rate pressure product) during stress. By ROC analysis, a ΔT1spleen threshold of ≥ -30 ms during stress predicted the "splenic switch-off" sign (AUC 0.90, p < 0.0001) with sensitivity (90%), specificity (88%), accuracy (90%), PPV (98%), NPV (42%). CONCLUSIONS: Adenosine stress and rest splenic T1-mapping is a novel method for assessing stress responses, independent of conventional hemodynamic parameters. It enables prediction of the visual "splenic switch-off" sign without the need for gadolinium, and correlates well to changes in splenic signal intensity during stress/rest perfusion imaging. ΔT1spleen holds promise to facilitate optimization of stress responses before gadolinium first-pass perfusion CMR.


Subject(s)
Adenosine/administration & dosage , Heart Diseases/diagnostic imaging , Magnetic Resonance Imaging , Myocardial Perfusion Imaging/methods , Spleen/blood supply , Spleen/diagnostic imaging , Vasodilator Agents/administration & dosage , Adult , Aged , Area Under Curve , Case-Control Studies , Contrast Media/administration & dosage , Coronary Circulation , False Negative Reactions , Female , Gadolinium/administration & dosage , Heart Diseases/physiopathology , Heart Rate , Hemodynamics , Humans , Male , Middle Aged , Predictive Value of Tests , ROC Curve , Reproducibility of Results , Splanchnic Circulation
SELECTION OF CITATIONS
SEARCH DETAIL