Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 387(13): 1173-1184, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36066078

ABSTRACT

BACKGROUND: Many persons with a history of smoking tobacco have clinically significant respiratory symptoms despite an absence of airflow obstruction as assessed by spirometry. They are often treated with medications for chronic obstructive pulmonary disease (COPD), but supporting evidence for this treatment is lacking. METHODS: We randomly assigned persons who had a tobacco-smoking history of at least 10 pack-years, respiratory symptoms as defined by a COPD Assessment Test score of at least 10 (scores range from 0 to 40, with higher scores indicating worse symptoms), and preserved lung function on spirometry (ratio of forced expiratory volume in 1 second [FEV1] to forced vital capacity [FVC] ≥0.70 and FVC ≥70% of the predicted value after bronchodilator use) to receive either indacaterol (27.5 µg) plus glycopyrrolate (15.6 µg) or placebo twice daily for 12 weeks. The primary outcome was at least a 4-point decrease (i.e., improvement) in the St. George's Respiratory Questionnaire (SGRQ) score (scores range from 0 to 100, with higher scores indicating worse health status) after 12 weeks without treatment failure (defined as an increase in lower respiratory symptoms treated with a long-acting inhaled bronchodilator, glucocorticoid, or antibiotic agent). RESULTS: A total of 535 participants underwent randomization. In the modified intention-to-treat population (471 participants), 128 of 227 participants (56.4%) in the treatment group and 144 of 244 (59.0%) in the placebo group had at least a 4-point decrease in the SGRQ score (difference, -2.6 percentage points; 95% confidence interval [CI], -11.6 to 6.3; adjusted odds ratio, 0.91; 95% CI, 0.60 to 1.37; P = 0.65). The mean change in the percent of predicted FEV1 was 2.48 percentage points (95% CI, 1.49 to 3.47) in the treatment group and -0.09 percentage points (95% CI, -1.06 to 0.89) in the placebo group, and the mean change in the inspiratory capacity was 0.12 liters (95% CI, 0.07 to 0.18) in the treatment group and 0.02 liters (95% CI, -0.03 to 0.08) in the placebo group. Four serious adverse events occurred in the treatment group, and 11 occurred in the placebo group; none were deemed potentially related to the treatment or placebo. CONCLUSIONS: Inhaled dual bronchodilator therapy did not decrease respiratory symptoms in symptomatic, tobacco-exposed persons with preserved lung function as assessed by spirometry. (Funded by the National Heart, Lung, and Blood Institute and others; RETHINC ClinicalTrials.gov number, NCT02867761.).


Subject(s)
Bronchodilator Agents , Pulmonary Disease, Chronic Obstructive , Adrenergic beta-2 Receptor Agonists/therapeutic use , Anti-Bacterial Agents/therapeutic use , Bronchodilator Agents/therapeutic use , Forced Expiratory Volume , Glucocorticoids/therapeutic use , Glycopyrrolate , Humans , Lung , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Nicotiana/adverse effects , Treatment Outcome
2.
Article in English | MEDLINE | ID: mdl-38507607

ABSTRACT

RATIONALE: Individuals with COPD have airflow obstruction and maldistribution of ventilation. For those living at high altitude, any gas exchange abnormality is compounded by reduced partial pressures of inspired oxygen. OBJECTIVES: Does residence at higher-altitude exposure affect COPD outcomes, including lung function, imaging characteristics, symptoms, health status, functional exercise capacity, exacerbations, or mortality? METHODS: From the SPIROMICS cohort, we identified individuals with COPD living below 1,000 ft (305 m) elevation (n= 1,367) versus above 4,000 ft (1,219 m) elevation (n= 288). Multivariable regression models were used to evaluate associations of exposure to high altitude with COPD-related outcomes. MEASUREMENTS AND MAIN RESULTS: Living at higher altitude was associated with reduced functional exercise capacity as defined by 6MWD (-32.3 m, (-55.7 to -28.6)). There were no differences in patient-reported outcomes as defined by symptoms (CAT, mMRC), or health status (SGRQ). Higher altitude was not associated with a different rate of FEV1 decline. Higher altitude was associated with lower odds of severe exacerbations (IRR 0.65, (0.46 to 0.90)). There were no differences in small airway disease, air trapping, or emphysema. In longitudinal analyses, higher altitude was associated with increased mortality (HR 1.25, (1.0 to 1.55)); however, this association was no longer significant when accounting for air pollution. CONCLUSIONS: Chronic altitude exposure is associated with reduced functional exercise capacity in individuals with COPD, but this did not translate into differences in symptoms or health status. Additionally, chronic high-altitude exposure did not affect progression of disease as defined by longitudinal changes in spirometry.

3.
BMC Pulm Med ; 24(1): 44, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245665

ABSTRACT

BACKGROUND: In tobacco-exposed persons with preserved spirometry (active smoking or secondhand smoke [SHS] exposure), air trapping can identify a subset with worse symptoms and exercise capacity. The physiologic nature of air trapping in the absence of spirometric airflow obstruction remains unclear. The aim of this study was to examine the underlying pathophysiology of air trapping in the context of preserved spirometry and to determine the utility of bronchodilators in SHS tobacco-exposed persons with preserved spirometry and air trapping. METHODS: We performed a double-blinded placebo-controlled crossover randomized clinical trial in nonsmoking individuals at risk for COPD due to exposure to occupational SHS who had preserved spirometry and air trapping defined as either a residual volume-to-total lung capacity ratio (RV/TLC) > 0.35 or presence of expiratory flow limitation (EFL, overlap of tidal breathing on maximum expiratory flow-volume loop) on spirometry at rest or during cardiopulmonary exercise testing (CPET). Those with asthma or obesity were excluded. Participants underwent CPET at baseline and after 4-week trials of twice daily inhalation of 180 mcg of albuterol or placebo separated by a 2-week washout period. The primary outcome was peak oxygen consumption (VO2) on CPET. Data was analyzed by both intention-to-treat and per-protocol based on adherence to treatment prescribed. RESULTS: Overall, 42 participants completed the entire study (66 ± 8 years old, 91% female; forced expiratory volume in 1 s [FEV1] = 103 ± 16% predicted; FEV1 to forced vital capacity [FVC] ratio = 0.75 ± 0.05; RV/TLC = 0.39 ± 0.07; 85.7% with EFL). Adherence was high with 87% and 93% of prescribed doses taken in the treatment and placebo arms of the study, respectively (P = 0.349 for comparison between the two arms). There was no significant improvement in the primary or secondary outcomes by intention-to-treat or per-protocol analysis. In per-protocol subgroup analysis of those with RV/TLC > 0.35 and ≥ 90% adherence (n = 27), albuterol caused an improvement in peak VO2 (parameter estimate [95% confidence interval] = 0.108 [0.014, 0.202]; P = 0.037), tidal volume, minute ventilation, dynamic hyperinflation, and oxygen-pulse (all P < 0.05), but no change in symptoms or physical activity. CONCLUSIONS: Albuterol may improve exercise capacity in the subgroup of SHS tobacco-exposed persons with preserved spirometry and substantial air trapping. These findings suggest that air trapping in pre-COPD may be related to small airway disease that is not considered significant by spirometric indices of airflow obstruction.


Subject(s)
Albuterol , Pulmonary Disease, Chronic Obstructive , Aged , Female , Humans , Male , Middle Aged , Albuterol/pharmacology , Exercise , Forced Expiratory Volume , Lung , Pulmonary Disease, Chronic Obstructive/epidemiology , Spirometry/methods , Vital Capacity/physiology
4.
BMC Pulm Med ; 24(1): 433, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223571

ABSTRACT

RATIONALE: Research studies typically quantify acute respiratory exacerbation episodes (AECOPD) among people with chronic obstructive pulmonary disease (COPD) based on self-report elicited by survey questionnaire. However, AECOPD quantification by self-report could be inaccurate, potentially rendering it an imprecise tool for identification of those with exacerbation tendency. OBJECTIVE: Determine the agreement between self-reported and health records-documented quantification of AECOPD and their association with airway inflammation. METHODS: We administered a questionnaire to elicit the incidence and severity of respiratory exacerbations in the three years preceding the survey among current or former heavy smokers with or without diagnosis of COPD. We then examined electronic health records (EHR) of those with COPD and those without (tobacco-exposed persons with preserved spirometry or TEPS) to determine whether the documentation of the three-year incidence of moderate to very severe respiratory exacerbations was consistent with self-report using Kappa Interrater statistic. A subgroup of participants also underwent bronchoalveolar lavage (BAL) to quantify their airway inflammatory cells. We further used multivariable regressions analysis to estimate the association between respiratory exacerbations and BAL inflammatory cell composition with adjustment for covariates including age, sex, height, weight, smoking status (current versus former) and burden (pack-years). RESULTS: Overall, a total of 511 participants completed the questionnaire, from whom 487 had EHR available for review. Among the 222 participants with COPD (70 ± 7 years-old; 96% male; 70 ± 38 pack-years smoking; 42% current smoking), 57 (26%) reported having any moderate to very severe AECOPD (m/s-AECOPD) while 66 (30%) had EHR documentation of m/s-AECOPD. However, 42% of those with EHR-identified m/s-AECOPD had none by self-report, and 33% of those who reported m/s-AECOPD had none by EHR, suggesting only moderate agreement (Cohen's Kappa = 0.47 ± 0.07; P < 0.001). Nevertheless, self-reported and EHR-identified m/s-AECOPD events were both associated with higher BAL neutrophils (ß ± SEM: 3.0 ± 1.1 and 1.3 ± 0.5 per 10% neutrophil increase; P ≤ 0.018) and lymphocytes (0.9 ± 0.4 and 0.7 ± 0.3 per 10% lymphocyte increase; P ≤ 0.041). Exacerbation by either measure combined was associated with a larger estimated effect (3.7 ± 1.2 and 1.0 ± 0.5 per 10% increase in neutrophils and lymphocytes, respectively) but was not statistically significantly different compared to the self-report only approach. Among the 184 TEPS participants, there were fewer moderate to very severe respiratory exacerbations by self-report (n = 15 or 8%) or EHR-documentation (n = 9 or 5%), but a similar level of agreement as those with COPD was observed (Cohen's Kappa = 0.38 ± 0.07; P < 0.001). DISCUSSION: While there is modest agreement between self-reported and EHR-identified m/s-AECOPD, events are missed by relying on either method alone. However, m/s-AECOPD quantified by self-report or health records is associated with BAL neutrophilia and lymphocytosis.


Subject(s)
Disease Progression , Lymphocytosis , Neutrophils , Pulmonary Disease, Chronic Obstructive , Self Report , Humans , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Male , Female , Aged , Middle Aged , Lymphocytosis/epidemiology , Bronchoalveolar Lavage Fluid/cytology , Surveys and Questionnaires , Smoking/epidemiology , Electronic Health Records , Severity of Illness Index
5.
Am J Respir Crit Care Med ; 206(10): 1220-1229, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35771531

ABSTRACT

Rationale: A common MUC5B gene polymorphism, rs35705950-T, is associated with idiopathic pulmonary fibrosis (IPF), but its role in severe acute respiratory syndrome coronavirus 2 infection and disease severity is unclear. Objectives: To assess whether rs35705950-T confers differential risk for clinical outcomes associated with coronavirus disease (COVID-19) infection among participants in the Million Veteran Program (MVP). Methods: The MUC5B rs35705950-T allele was directly genotyped among MVP participants; clinical events and comorbidities were extracted from the electronic health records. Associations between the incidence or severity of COVID-19 and rs35705950-T were analyzed within each ancestry group in the MVP followed by transancestry meta-analysis. Replication and joint meta-analysis were conducted using summary statistics from the COVID-19 Host Genetics Initiative (HGI). Sensitivity analyses with adjustment for additional covariates (body mass index, Charlson comorbidity index, smoking, asbestosis, rheumatoid arthritis with interstitial lung disease, and IPF) and associations with post-COVID-19 pneumonia were performed in MVP subjects. Measurements and Main Results: The rs35705950-T allele was associated with fewer COVID-19 hospitalizations in transancestry meta-analyses within the MVP (Ncases = 4,325; Ncontrols = 507,640; OR = 0.89 [0.82-0.97]; P = 6.86 × 10-3) and joint meta-analyses with the HGI (Ncases = 13,320; Ncontrols = 1,508,841; OR, 0.90 [0.86-0.95]; P = 8.99 × 10-5). The rs35705950-T allele was not associated with reduced COVID-19 positivity in transancestry meta-analysis within the MVP (Ncases = 19,168/Ncontrols = 492,854; OR, 0.98 [0.95-1.01]; P = 0.06) but was nominally significant (P < 0.05) in the joint meta-analysis with the HGI (Ncases = 44,820; Ncontrols = 1,775,827; OR, 0.97 [0.95-1.00]; P = 0.03). Associations were not observed with severe outcomes or mortality. Among individuals of European ancestry in the MVP, rs35705950-T was associated with fewer post-COVID-19 pneumonia events (OR, 0.82 [0.72-0.93]; P = 0.001). Conclusions: The MUC5B variant rs35705950-T may confer protection in COVID-19 hospitalizations.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Humans , COVID-19/epidemiology , COVID-19/genetics , Mucin-5B/genetics , Polymorphism, Genetic , Idiopathic Pulmonary Fibrosis/genetics , Genotype , Hospitalization , Genetic Predisposition to Disease/genetics
6.
JAMA ; 330(5): 442-453, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37526720

ABSTRACT

Importance: People who smoked cigarettes may experience respiratory symptoms without spirometric airflow obstruction. These individuals are typically excluded from chronic obstructive pulmonary disease (COPD) trials and lack evidence-based therapies. Objective: To define the natural history of persons with tobacco exposure and preserved spirometry (TEPS) and symptoms (symptomatic TEPS). Design, Setting, and Participants: SPIROMICS II was an extension of SPIROMICS I, a multicenter study of persons aged 40 to 80 years who smoked cigarettes (>20 pack-years) with or without COPD and controls without tobacco exposure or airflow obstruction. Participants were enrolled in SPIROMICS I and II from November 10, 2010, through July 31, 2015, and followed up through July 31, 2021. Exposures: Participants in SPIROMICS I underwent spirometry, 6-minute walk distance testing, assessment of respiratory symptoms, and computed tomography of the chest at yearly visits for 3 to 4 years. Participants in SPIROMICS II had 1 additional in-person visit 5 to 7 years after enrollment in SPIROMICS I. Respiratory symptoms were assessed with the COPD Assessment Test (range, 0 to 40; higher scores indicate more severe symptoms). Participants with symptomatic TEPS had normal spirometry (postbronchodilator ratio of forced expiratory volume in the first second [FEV1] to forced vital capacity >0.70) and COPD Assessment Test scores of 10 or greater. Participants with asymptomatic TEPS had normal spirometry and COPD Assessment Test scores of less than 10. Patient-reported respiratory symptoms and exacerbations were assessed every 4 months via phone calls. Main Outcomes and Measures: The primary outcome was assessment for accelerated decline in lung function (FEV1) in participants with symptomatic TEPS vs asymptomatic TEPS. Secondary outcomes included development of COPD defined by spirometry, respiratory symptoms, rates of respiratory exacerbations, and progression of computed tomographic-defined airway wall thickening or emphysema. Results: Of 1397 study participants, 226 had symptomatic TEPS (mean age, 60.1 [SD, 9.8] years; 134 were women [59%]) and 269 had asymptomatic TEPS (mean age, 63.1 [SD, 9.1] years; 134 were women [50%]). At a median follow-up of 5.76 years, the decline in FEV1 was -31.3 mL/y for participants with symptomatic TEPS vs -38.8 mL/y for those with asymptomatic TEPS (between-group difference, -7.5 mL/y [95% CI, -16.6 to 1.6 mL/y]). The cumulative incidence of COPD was 33.0% among participants with symptomatic TEPS vs 31.6% among those with asymptomatic TEPS (hazard ratio, 1.05 [95% CI, 0.76 to 1.46]). Participants with symptomatic TEPS had significantly more respiratory exacerbations than those with asymptomatic TEPS (0.23 vs 0.08 exacerbations per person-year, respectively; rate ratio, 2.38 [95% CI, 1.71 to 3.31], P < .001). Conclusions and Relevance: Participants with symptomatic TEPS did not have accelerated rates of decline in FEV1 or increased incidence of COPD vs those with asymptomatic TEPS, but participants with symptomatic TEPS did experience significantly more respiratory exacerbations over a median follow-up of 5.8 years.


Subject(s)
Cigarette Smoking , Lung Diseases , Spirometry , Female , Humans , Male , Middle Aged , Disease Progression , Follow-Up Studies , Forced Expiratory Volume , Lung/diagnostic imaging , Lung/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Vital Capacity , Longitudinal Studies , Cigarette Smoking/adverse effects , Cigarette Smoking/physiopathology , Lung Diseases/diagnostic imaging , Lung Diseases/etiology , Lung Diseases/physiopathology , Respiratory Function Tests
7.
J Med Internet Res ; 24(1): e28953, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34989686

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) poses a large burden on health care. Severe COPD exacerbations require emergency department visits or inpatient stays, often cause an irreversible decline in lung function and health status, and account for 90.3% of the total medical cost related to COPD. Many severe COPD exacerbations are deemed preventable with appropriate outpatient care. Current models for predicting severe COPD exacerbations lack accuracy, making it difficult to effectively target patients at high risk for preventive care management to reduce severe COPD exacerbations and improve outcomes. OBJECTIVE: The aim of this study is to develop a more accurate model to predict severe COPD exacerbations. METHODS: We examined all patients with COPD who visited the University of Washington Medicine facilities between 2011 and 2019 and identified 278 candidate features. By performing secondary analysis on 43,576 University of Washington Medicine data instances from 2011 to 2019, we created a machine learning model to predict severe COPD exacerbations in the next year for patients with COPD. RESULTS: The final model had an area under the receiver operating characteristic curve of 0.866. When using the top 9.99% (752/7529) of the patients with the largest predicted risk to set the cutoff threshold for binary classification, the model gained an accuracy of 90.33% (6801/7529), a sensitivity of 56.6% (103/182), and a specificity of 91.17% (6698/7347). CONCLUSIONS: Our model provided a more accurate prediction of severe COPD exacerbations in the next year compared with prior published models. After further improvement of its performance measures (eg, by adding features extracted from clinical notes), our model could be used in a decision support tool to guide the identification of patients with COPD and at high risk for care management to improve outcomes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/13783.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Disease Progression , Humans , Machine Learning , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/therapy , ROC Curve , Retrospective Studies
8.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L65-L78, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33851870

ABSTRACT

Microbial metabolites produced by the gut microbiome, e.g. short-chain fatty acids (SCFA), have been found to influence lung physiology and injury responses. However, how lung immune activity is regulated by SCFA is unknown. We examined fresh human lung tissue and observed the presence of SCFA with interindividual variability. In vitro, SCFA were capable of modifying the metabolic programming in LPS-exposed alveolar macrophages (AM). We hypothesized that lung immune tone could be defined by baseline detection of lung intracellular IL-1ß. Therefore, we interrogated naïve mouse lungs with intact gut microbiota for IL-1ß mRNA expression and localized its presence within alveolar spaces, specifically within AM subsets. We established that metabolically active gut microbiota, which produce SCFA, can transmit LPS and SCFA to the lung and thereby could create primed lung immunometabolic tone. To understand how murine lung cells sensed and upregulated IL-1ß in response to gut microbiome-derived factors, we determined that, in vitro, AM and alveolar type II (AT2) cells expressed SCFA receptors, free fatty acid receptor 2 (FFAR2), free fatty acid receptor 3 (FFAR3), and IL-1ß but with distinct expression patterns and different responses to LPS. Finally, we observed that IL-1ß, FFAR2, and FFAR3 were expressed in isolated human AM and AT2 cells ex vivo, but in fresh human lung sections in situ, only AM expressed IL-1ß at rest and after LPS challenge. Together, this translational study using mouse and human lung tissue and cells point to an important role for the gut microbiome and their SCFA in establishing and regulating lung immune tone.


Subject(s)
Fatty Acids, Volatile/pharmacology , Gastrointestinal Tract/metabolism , Gene Expression Regulation/drug effects , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Lung/immunology , Receptors, G-Protein-Coupled/metabolism , Animals , Female , Humans , Interleukin-1beta/genetics , Lung/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/genetics
9.
Am J Respir Cell Mol Biol ; 63(6): 780-793, 2020 12.
Article in English | MEDLINE | ID: mdl-32915645

ABSTRACT

Lung myeloid cells are important in pulmonary immune homeostasis and in the pathogenesis of chronic obstructive pulmonary disease (COPD). Multiparameter immunophenotypic characterization of these cells is challenging because of their autofluorescence and diversity. We evaluated the immunophenotypic landscape of airway myeloid cells in COPD using time of flight mass cytometry. Cells from BAL, which were obtained from never-smokers (n = 8) and smokers with (n = 20) and without (n = 4) spirometric COPD, were examined using a 44-parameter time of flight mass cytometry panel. Unsupervised cluster analysis was used to identify cellular subtypes that were confirmed by manual gating. We identified major populations of CD68+ and CD68- cells with 22 distinct phenotypic clusters, of which 18 were myeloid cells. We found a higher abundance of putative recruited myeloid cells (CD68+ classical monocytes) in BAL from patients with COPD. CD68+ classical monocyte population had distinct responses to smoking and COPD that were potentially related to their recruitment from the interstitium and vasculature. We demonstrate that BAL cells from smokers and subjects with COPD have lower AXL expression. Also, among subjects with COPD, we report significant differences in the abundance of PDL1high and PDL2high clusters and in the expression of PDL1 and PDL2 across several macrophage subtypes suggesting modulation of inflammatory responses. In addition, several phenotypic differences in BAL cells from subjects with history of COPD exacerbation were identified that could inform potential disease mechanisms. Overall, we report several changes to the immunophenotypic landscape that occur with smoking, COPD, and past exacerbations that are consistent with decreased regulation and increased activation of inflammatory pathways.


Subject(s)
B7-H1 Antigen/metabolism , Myeloid Cells/metabolism , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Proto-Oncogene Proteins/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Aged , Bronchoalveolar Lavage Fluid/cytology , Female , Humans , Inflammation/metabolism , Lung/metabolism , Lung/pathology , Macrophages/metabolism , Male , Middle Aged , Monocytes/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Smoking/immunology , Axl Receptor Tyrosine Kinase
10.
Thorax ; 74(2): 114-124, 2019 02.
Article in English | MEDLINE | ID: mdl-30030304

ABSTRACT

BACKGROUND: Abnormal lung volumes that reflect air trapping are common in COPD. However, their significance in smokers with preserved spirometry (normal FEV1 to FVC ratio) is unclear. METHODS: Using the Veterans Administration Informatics and Computing Infrastructure database, we identified 7479 patients at risk for COPD (ever smokers >40 years of age without restrictive lung disease) who had preserved spirometry and concomitant lung volume measurements, and examined their subsequent health records for clinical diagnoses of COPD, healthcare utilisation, follow-up spirometry and mortality. RESULTS: Air trapping was prevalent, with 31% of patients having residual volume to total lung capacity ratio (RV:TLC) greater than the upper limit of normal (ULN). RV:TLC varied widely from 14% to 77% (51% to 204% of predicted) across the normal ranges of FEV1:FVC and FEV1. Patients with RV:TLC greater than the ULN were more likely to receive subsequent clinical diagnoses of COPD (HR (95% CI)=1.55 (1.42 to 1.70), p<0.001) and had higher all-cause mortality (HR (95% CI)=1.41 (1.29 to 1.54), p<0.001). They had higher rates of respiratory medication prescriptions and hospital and intensive care unit admissions. Other air trapping and static hyperinflation indices showed similar associations with health outcomes. Additionally, high-normal RV:TLC was associated with intermediate adverse health outcomes compared with low-normal and abnormal RV:TLC. Abnormal RV:TLC predicted higher likelihood of progression to spirometric COPD (OR (95% CI)=1.30 (1.03 to 1.65), p=0.027). CONCLUSION: In this study of the Veterans Affairs electronic health records, air trapping was common in smokers with preserved spirometry and predicted adverse respiratory outcomes and progression to overt COPD.


Subject(s)
Lung/physiopathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Smokers/statistics & numerical data , Spirometry/methods , Adult , Aged , Databases, Factual , Disease Progression , Female , Humans , Male , Middle Aged , Patient Acceptance of Health Care/statistics & numerical data , Pulmonary Disease, Chronic Obstructive/mortality , Retrospective Studies , Survival Rate , Veterans
11.
Eur Respir J ; 54(4)2019 10.
Article in English | MEDLINE | ID: mdl-31439683

ABSTRACT

The characteristics that predict progression to overt chronic obstructive pulmonary disease (COPD) in smokers without spirometric airflow obstruction are not clearly defined.We conducted a post hoc analysis of 849 current and former smokers (≥20 pack-years) with preserved spirometry from the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) cohort who had baseline computed tomography (CT) scans of lungs and serial spirometry. We examined whether CT-derived lung volumes representing air trapping could predict adverse respiratory outcomes and more rapid decline in spirometry to overt COPD using mixed-effect linear modelling.Among these subjects with normal forced expiratory volume in 1 s (FEV1) to forced vital capacity (FVC) ratio, CT-measured residual volume (RVCT) to total lung capacity (TLCCT) ratio varied widely, from 21% to 59%. Over 2.5±0.7 years of follow-up, subjects with higher RVCT/TLCCT had a greater differential rate of decline in FEV1/FVC; those in the upper RVCT/TLCCT tertile had a 0.66% (95% CI 0.06%-1.27%) faster rate of decline per year compared with those in the lower tertile (p=0.015) regardless of demographics, baseline spirometry, respiratory symptoms score, smoking status (former versus current) or smoking burden (pack-years). Accordingly, subjects with higher RVCT/TLCCT were more likely to develop spirometric COPD (OR 5.7 (95% CI 2.4-13.2) in upper versus lower RVCT/TLCCT tertile; p<0.001). Other CT indices of air trapping showed similar patterns of association with lung function decline; however, when all CT indices of air trapping, emphysema, and airway disease were included in the same model, only RVCT/TLCCT retained its significance.Increased air trapping based on radiographic lung volumes predicts accelerated spirometry decline and progression to COPD in smokers without obstruction.


Subject(s)
Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Smoking/physiopathology , Aged , Disease Progression , Female , Forced Expiratory Volume , Humans , Lung/physiopathology , Male , Middle Aged , Proportional Hazards Models , Pulmonary Disease, Chronic Obstructive/physiopathology , Residual Volume , Spirometry , Tomography, X-Ray Computed , Total Lung Capacity , Vital Capacity
12.
Am J Respir Crit Care Med ; 197(10): 1319-1327, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29232153

ABSTRACT

RATIONALE: Acute respiratory effects of low-level ozone exposure are not well defined in older adults. OBJECTIVES: MOSES (The Multicenter Ozone Study in Older Subjects), although primarily focused on acute cardiovascular effects, provided an opportunity to assess respiratory responses to low concentrations of ozone in older healthy adults. METHODS: We performed a randomized crossover, controlled exposure study of 87 healthy adults (59.9 ± 4.5 yr old; 60% female) to 0, 70, and 120 ppb ozone for 3 hours with intermittent exercise. Outcome measures included spirometry, sputum markers of airway inflammation, and plasma club cell protein-16 (CC16), a marker of airway epithelial injury. The effects of ozone exposure on these outcomes were evaluated with mixed-effect linear models. A P value less than 0.01 was chosen a priori to define statistical significance. MEASUREMENTS AND MAIN RESULTS: The mean (95% confidence interval) FEV1 and FVC increased from preexposure values by 2.7% (2.0-3.4) and 2.1% (1.3-2.9), respectively, 15 minutes after exposure to filtered air (0 ppb). Exposure to ozone reduced these increases in a concentration-dependent manner. After 120-ppb exposure, FEV1 and FVC decreased by 1.7% (1.1-2.3) and 0.8% (0.3-1.3), respectively. A similar concentration-dependent pattern was still discernible 22 hours after exposure. At 4 hours after exposure, plasma CC16 increased from preexposure levels in an ozone concentration-dependent manner. Sputum neutrophils obtained 22 hours after exposure showed a marginally significant increase in a concentration-dependent manner (P = 0.012), but proinflammatory cytokines (IL-6, IL-8, and tumor necrosis factor-α) were not significantly affected. CONCLUSIONS: Exposure to ozone at near ambient levels induced lung function effects, airway injury, and airway inflammation in older healthy adults. Clinical trial registered with www.clinicaltrials.gov (NCT01487005).


Subject(s)
Air Pollutants/adverse effects , Environmental Exposure/adverse effects , Inflammation/chemically induced , Inflammation/physiopathology , Inhalation Exposure/adverse effects , Lung/physiopathology , Ozone/adverse effects , Aged , Aged, 80 and over , California , Cross-Over Studies , Female , Humans , Male , Middle Aged , New York , North Carolina
13.
Ann Intern Med ; 169(2): 106-115, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29971337

ABSTRACT

Background: The health effects of smoking marijuana are not well-understood. Purpose: To examine the association between marijuana use and respiratory symptoms, pulmonary function, and obstructive lung disease among adolescents and adults. Data Sources: PubMed, Embase, PsycINFO, MEDLINE, and the Cochrane Library from 1 January 1973 to 30 April 2018. Study Selection: Observational and interventional studies published in English that reported pulmonary outcomes of adolescents and adults who used marijuana. Data Extraction: Four reviewers independently extracted study characteristics and assessed risk of bias. Three reviewers assessed strength of evidence. Studies of similar design with low or moderate risk of bias and sufficient data were pooled. Data Synthesis: Twenty-two studies were included. A pooled analysis of 2 prospective studies showed that marijuana use was associated with an increased risk for cough (risk ratio [RR], 2.04 [95% CI, 1.02 to 4.06]) and sputum production (RR, 3.84 [CI, 1.62 to 9.07]). Pooled analysis of cross-sectional studies (1 low and 3 moderate risk of bias) showed that marijuana use was associated with cough (RR, 4.37 [CI, 1.71 to 11.19]), sputum production (RR, 3.40 [CI, 1.99 to 5.79]), wheezing (RR, 2.83 [CI, 1.89 to 4.23]), and dyspnea (RR, 1.56 [CI, 1.33 to 1.83]). Data on pulmonary function and obstructive lung disease were insufficient. Limitation: Few studies were at low risk of bias, marijuana exposure was limited in the population studied, cohorts were young overall, assessment of marijuana exposure was not uniform, and study designs varied. Conclusion: Low-strength evidence suggests that smoking marijuana is associated with cough, sputum production, and wheezing. Evidence on the association between marijuana use and obstructive lung disease and pulmonary function is insufficient. Primary Funding Source: None. (PROSPERO: CRD42017059224).


Subject(s)
Lung/physiology , Marijuana Smoking/adverse effects , Respiratory Tract Diseases/etiology , Humans , Lung/drug effects , Respiratory Function Tests
14.
Inhal Toxicol ; 29(3): 96-105, 2017 02.
Article in English | MEDLINE | ID: mdl-28412860

ABSTRACT

BACKGROUND: Epidemiologic studies have linked inhalation of air pollutants such as ozone to cardiovascular mortality. Human exposure studies have shown that inhalation of ambient levels of ozone causes airway and systemic inflammation and an imbalance in sympathetic/parasympathetic tone. METHODS: To explore molecular mechanisms through which ozone inhalation contributes to cardiovascular mortality, we compared transcriptomics data previously obtained from bronchoalveolar lavage (BAL) cells obtained from healthy subjects after inhalational exposure to ozone (200 ppb for 4 h) to those of various cell samples from 11 published studies of patients with atherosclerotic disease using the Nextbio genomic data platform. Overlapping gene ontologies that may be involved in the transition from pulmonary to systemic vascular inflammation after ozone inhalation were explored. Local and systemic enzymatic activity of an overlapping upregulated gene, matrix metalloproteinase-9 (MMP-9), was measured by zymography after ozone exposure. RESULTS: A set of differentially expressed genes involved in response to stimulus, stress, and wounding were in common between the ozone and most of the atherosclerosis studies. Many of these genes contribute to biological processes such as cholesterol metabolism dysfunction, increased monocyte adherence, endothelial cell lesions, and matrix remodeling, and to diseases such as heart failure, ischemia, and atherosclerotic occlusive disease. Inhalation of ozone increased MMP-9 enzymatic activity in both BAL fluid and serum. CONCLUSIONS: Comparison of transcriptomics between BAL cells after ozone exposure and various cell types from patients with atherosclerotic disease reveals commonly regulated processes and potential mechanisms by which ozone inhalation may contribute to progression of pre-existent atherosclerotic lesions.


Subject(s)
Air Pollutants/toxicity , Bronchoalveolar Lavage Fluid/cytology , Cardiovascular Diseases/genetics , Inflammation/genetics , Ozone/toxicity , Gene Expression/drug effects , Gene Expression Profiling , Humans , Inhalation Exposure , Matrix Metalloproteinase 2/blood , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/blood , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Regression Analysis
16.
Proc Natl Acad Sci U S A ; 110(2): 660-5, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23269839

ABSTRACT

Airway obstruction is a hallmark of allergic asthma and is caused primarily by airway smooth muscle (ASM) hypercontractility. Airway inflammation leads to the release of cytokines that enhance ASM contraction by increasing ras homolog gene family, member A (RhoA) activity. The protective mechanisms that prevent or attenuate the increase in RhoA activity have not been well studied. Here, we report that mice lacking the gene that encodes the protein Milk Fat Globule-EGF factor 8 (Mfge8(-/-)) develop exaggerated airway hyperresponsiveness in experimental models of asthma. Mfge8(-/-) ASM had enhanced contraction after treatment with IL-13, IL-17A, or TNF-α. Recombinant Mfge8 reduced contraction in murine and human ASM treated with IL-13. Mfge8 inhibited IL-13-induced NF-κB activation and induction of RhoA. Mfge8 also inhibited rapid activation of RhoA, an effect that was eliminated by an inactivating point mutation in the RGD integrin-binding site in recombinant Mfge8. Human subjects with asthma had decreased Mfge8 expression in airway biopsies compared with healthy controls. These data indicate that Mfge8 binding to integrin receptors on ASM opposes the effect of allergic inflammation on RhoA activity and identify a pathway for specific inhibition of ASM hypercontractility in asthma.


Subject(s)
Antigens, Surface/metabolism , Asthma/physiopathology , Bronchial Hyperreactivity/physiopathology , Milk Proteins/metabolism , Muscle Contraction/physiology , Muscle, Smooth/physiology , Analysis of Variance , Animals , Antigens, Surface/genetics , Blotting, Western , Bronchoalveolar Lavage , Calcium/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Humans , Interleukin-13/pharmacology , Lung/pathology , Mice , Mice, Knockout , Milk Proteins/genetics , NF-kappa B/metabolism , Point Mutation/genetics , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein
17.
Am J Physiol Heart Circ Physiol ; 308(12): H1499-509, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25862833

ABSTRACT

Epidemiological evidence suggests that exposure to ozone increases cardiovascular morbidity. However, the specific biological mechanisms mediating ozone-associated cardiovascular effects are unknown. To determine whether short-term exposure to ambient levels of ozone causes changes in biomarkers of cardiovascular disease including heart rate variability (HRV), systemic inflammation, and coagulability, 26 subjects were exposed to 0, 100, and 200 ppb ozone in random order for 4 h with intermittent exercise. HRV was measured and blood samples were obtained immediately before (0 h), immediately after (4 h), and 20 h after (24 h) each exposure. Bronchoscopy with bronchoalveolar lavage (BAL) was performed 20 h after exposure. Regression modeling was used to examine dose-response trends between the endpoints and ozone exposure. Inhalation of ozone induced dose-dependent adverse changes in the frequency domains of HRV across exposures consistent with increased sympathetic tone [increase of (parameter estimate ± SE) 0.4 ± 0.2 and 0.3 ± 0.1 in low- to high-frequency domain HRV ratio per 100 ppb increase in ozone at 4 h and 24 h, respectively (P = 0.02 and P = 0.01)] and a dose-dependent increase in serum C-reactive protein (CRP) across exposures at 24 h [increase of 0.61 ± 0.24 mg/l in CRP per 100 ppb increase in ozone (P = 0.01)]. Changes in HRV and CRP did not correlate with ozone-induced local lung inflammatory responses (BAL granulocytes, IL-6, or IL-8), but changes in HRV and CRP were associated with each other after adjustment for age and ozone level. Inhalation of ozone causes adverse systemic inflammatory and cardiac autonomic effects that may contribute to the cardiovascular mortality associated with short-term exposure.


Subject(s)
Air Pollutants/adverse effects , Autonomic Nervous System/drug effects , Heart Rate/drug effects , Heart/innervation , Inflammation/chemically induced , Ozone/adverse effects , Adult , Autonomic Nervous System/physiopathology , Biomarkers/blood , Blood Coagulation/drug effects , Blood Pressure/drug effects , Bronchoalveolar Lavage Fluid/immunology , C-Reactive Protein/metabolism , Dose-Response Relationship, Drug , Female , Humans , Inflammation/blood , Inflammation/immunology , Inflammation Mediators/blood , Inhalation Exposure/adverse effects , Interleukin-6/metabolism , Interleukin-8/metabolism , Lung/drug effects , Lung/immunology , Lung/metabolism , Lung/physiopathology , Male , Peptidyl-Dipeptidase A/blood , Time Factors , Young Adult
18.
COPD ; 12(2): 182-9, 2015 04.
Article in English | MEDLINE | ID: mdl-24983136

ABSTRACT

BACKGROUND: Exposure to secondhand tobacco smoke (SHS) can be a risk factor for chronic obstructive pulmonary disease (COPD), but its role among relatively heavy smokers with potential co-exposure to workplace vapors, gas, dust, and fumes (VGDF) has not been studied. METHODS: To estimate the contribution of SHS exposure to COPD risk, taking into account smoking effects and work-related exposures to VGDF, we quantified SHS based on survey responses for 1400 ever-employed subjects enrolled in the COPDGene study, all current or former smokers with or without COPD. Occupational exposures to VGDF were quantified based on a job exposure matrix. The associations between SHS and COPD were tested in multivariate logistic regression analyses adjusted for age, sex, VGDF exposure, and cumulative smoking. RESULTS AND DISCUSSION: Exposures to SHS at work and at home during adulthood were associated with increased COPD risk: odds ratio (OR) = 1.12 (95% confidence interval [CI]: 1.02-1.23; p = 0.01) and OR = 1.09 (95%CI: 1.00-1.18; p = 0.04) per 10 years of exposure adjusted for smoking and other covariates, respectively. In addition, subjects with employment histories likely to entail exposure to VGDF were more likely to have COPD: OR = 1.52 (95%CI: 1.16-1.98; p < 0.01) (adjusted for other covariates). While adult home SHS COPD risk was attenuated among the heaviest smokers within the cohort, workplace SHS and job VGDF risks persisted in that stratum. CONCLUSION: Among smokers all with at least 10 pack-years, adult home and work SHS exposures and occupational VGDF exposure are all associated with COPD.


Subject(s)
Air Pollutants, Occupational/adverse effects , Occupational Diseases/etiology , Occupational Exposure/adverse effects , Pulmonary Disease, Chronic Obstructive/etiology , Smoking/adverse effects , Tobacco Smoke Pollution/adverse effects , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Humans , Logistic Models , Male , Middle Aged , Risk Factors , Surveys and Questionnaires
19.
Sci Rep ; 14(1): 15351, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38961189

ABSTRACT

As SARS-CoV-2 continues to spread worldwide, tractable primary airway cell models that recapitulate the cell-intrinsic response to arising viral variants are needed. Here we describe an adult stem cell-derived human airway organoid model overexpressing the ACE2 receptor (ACE2-OE) that supports robust viral replication while maintaining 3D architecture and cellular diversity of the airway epithelium. ACE2-OE organoids were infected with SARS-CoV-2 variants and subjected to single-cell RNA-sequencing. Interferon-lambda was upregulated in cells with low-level infection while the NF-kB inhibitor alpha gene (encoding IkBa) was consistently upregulated in infected cells, and its expression positively correlated with infection levels. Confocal microscopy showed more IkBa expression in infected than bystander cells, but found concurrent nuclear translocation of NF-kB that IkBa usually prevents. Overexpressing a nondegradable IkBa mutant reduced NF-kB translocation and increased viral infection. These data demonstrate the functionality of ACE2-OE organoids in SARS-CoV-2 research and underscore that the strength of the NF-kB feedback loop in infected cells controls viral replication.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , NF-KappaB Inhibitor alpha , Organoids , SARS-CoV-2 , Virus Replication , Humans , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/virology , COVID-19/metabolism , COVID-19/genetics , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/genetics , Organoids/virology , Organoids/metabolism , SARS-CoV-2/physiology
20.
ERJ Open Res ; 9(5)2023 Sep.
Article in English | MEDLINE | ID: mdl-37727675

ABSTRACT

Rationale: Lung volumes identify the "susceptible smokers" who progress to develop spirometric COPD. However, among susceptible smokers, development of spirometric COPD seems to be heterogeneous, suggesting the presence of different pathological mechanisms during early establishment of spirometric COPD. The objective of the present study was to determine the differential patterns of radiographic pathologies among susceptible smokers. Methods: We categorised smokers with preserved spirometry (Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 0) in the Genetic Epidemiology of COPD (COPDGene) cohort based on tertiles (low, intermediate and high) of lung volumes (either total lung capacity (TLC), functional residual capacity FRC or FRC/TLC) at baseline visit. We then examined the differential patterns of change in spirometry and the associated prevalence of computed tomography measured pathologies of emphysema and airway disease with those categories of lung volumes. Results: The pattern of spirometric change differed when participants were categorised by TLC versus FRC/TLC: those in the high TLC tertile showed stable forced expiratory volume in 1 s (FEV1), but enlarging forced vital capacity (FVC), while those in the high FRC/TLC tertile showed decline in both FEV1 and FVC. When participants from the high TLC and high FRC/TLC tertiles were partitioned into mutually exclusive groups, compared to those with high TLC, those with high FRC/TLC had lesser emphysema, but greater air trapping, more self-reported respiratory symptoms and exacerbation episodes and higher likelihood of progressing to more severe spirometric disease (GOLD stages 2-4 versus GOLD stage 1). Conclusions: Lung volumes identify distinct physiological and radiographic phenotypes in early disease among susceptible smokers and predict the rate of spirometric disease progression and the severity of symptoms in early COPD.

SELECTION OF CITATIONS
SEARCH DETAIL