Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Am J Physiol Renal Physiol ; 324(6): F532-F543, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37102687

ABSTRACT

Phosphoenolpyruvate carboxykinase 1 (PCK1 or PEPCK-C) is a cytosolic enzyme converting oxaloacetate to phosphoenolpyruvate, with a potential role in gluconeogenesis, ammoniagenesis, and cataplerosis in the liver. Kidney proximal tubule cells display high expression of this enzyme, whose importance is currently not well defined. We generated PCK1 kidney-specific knockout and knockin mice under the tubular cell-specific PAX8 promoter. We studied the effect of PCK1 deletion and overexpression at the renal level on tubular physiology under normal conditions and during metabolic acidosis and proteinuric renal disease. PCK1 deletion led to hyperchloremic metabolic acidosis characterized by reduced but not abolished ammoniagenesis. PCK1 deletion also resulted in glycosuria, lactaturia, and altered systemic glucose and lactate metabolism at baseline and during metabolic acidosis. Metabolic acidosis resulted in kidney injury in PCK1-deficient animals with decreased creatinine clearance and albuminuria. PCK1 further regulated energy production by the proximal tubule, and PCK1 deletion decreased ATP generation. In proteinuric chronic kidney disease, mitigation of PCK1 downregulation led to better renal function preservation. PCK1 is essential for kidney tubular cell acid-base control, mitochondrial function, and glucose/lactate homeostasis. Loss of PCK1 increases tubular injury during acidosis. Mitigating kidney tubular PCK1 downregulation during proteinuric renal disease improves renal function.NEW & NOTEWORTHY Phosphoenolpyruvate carboxykinase 1 (PCK1) is highly expressed in the proximal tubule. We show here that this enzyme is crucial for the maintenance of normal tubular physiology, lactate, and glucose homeostasis. PCK1 is a regulator of acid-base balance and ammoniagenesis. Preventing PCK1 downregulation during renal injury improves renal function, rendering it an important target during renal disease.


Subject(s)
Acidosis , Kidney , Animals , Mice , Acidosis/metabolism , Glucose/metabolism , Kidney/metabolism , Lactates/metabolism , Mitochondria/metabolism , Phosphoenolpyruvate/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism
2.
Nephrol Dial Transplant ; 38(10): 2276-2288, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37096392

ABSTRACT

BACKGROUND: The roles of hypoxia and hypoxia inducible factor (HIF) during chronic kidney disease (CKD) are much debated. Interventional studies with HIF-α activation in rodents have yielded contradictory results. The HIF pathway is regulated by prolyl and asparaginyl hydroxylases. While prolyl hydroxylase inhibition is a well-known method to stabilize HIF-α, little is known about the effect asparaginyl hydroxylase factor inhibiting HIF (FIH). METHODS: We used a model of progressive proteinuric CKD and a model of obstructive nephropathy with unilateral fibrosis. In these models we assessed hypoxia with pimonidazole and vascularization with three-dimensional micro-computed tomography imaging. We analysed a database of 217 CKD biopsies from stage 1 to 5 and we randomly collected 15 CKD biopsies of various severity degrees to assess FIH expression. Finally, we modulated FIH activity in vitro and in vivo using a pharmacologic approach to assess its relevance in CKD. RESULTS: In our model of proteinuric CKD, we show that early CKD stages are not characterized by hypoxia or HIF activation. At late CKD stages, some areas of hypoxia are observed, but these are not colocalizing with fibrosis. In mice and in humans, we observed a downregulation of the HIF pathway, together with an increased FIH expression in CKD, according to its severity. Modulating FIH in vitro affects cellular metabolism, as described previously. In vivo, pharmacologic FIH inhibition increases the glomerular filtration rate of control and CKD animals and is associated with decreased development of fibrosis. CONCLUSIONS: The causative role of hypoxia and HIF activation in CKD progression is questioned. A pharmacological approach of FIH downregulation seems promising in proteinuric kidney disease.


Subject(s)
Hypoxia , Mixed Function Oxygenases , Humans , Animals , Mice , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , X-Ray Microtomography , Repressor Proteins/genetics , Down-Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
3.
Pflugers Arch ; 474(8): 841-852, 2022 08.
Article in English | MEDLINE | ID: mdl-35678906

ABSTRACT

Saving body water by optimal reabsorption of water filtered by the kidney leading to excretion of urine with concentrations of solutes largely above that of plasma allowed vertebrate species to leave the aquatic environment to live on solid ground. Filtered water is reabsorbed for 70% and 20% by proximal tubules and thin descending limbs of Henle, respectively. These two nephron segments express the water channel aquaporin-1 located along both apical and basolateral membranes. In the proximal tubule, the paracellular pathway accounts for at least 30% of water reabsorption, and the tight-junction core protein claudin-2 plays a key role in this permeability. The ascending limb of Henle and the distal convoluted tubule are impermeant to water and are responsible for urine dilution. The water balance is adjusted along the collecting system, i.e. connecting tubule and the collecting duct, under the control of arginine-vasopressin (AVP). AVP is synthesized by the hypothalamus and released in response to an increase in extracellular osmolality or stimulation of baroreceptors by decreased blood pressure. In response to AVP, aquaporin-2 water channels stored in subapical intracellular vesicles are translocated to the apical plasma membrane and raise the water permeability of the collecting system. The basolateral step of water reabsorption is mediated by aquaporin-3 and -4, which are constitutively expressed. Drugs targeting water transport include classical diuretics, which primarily inhibit sodium transport; the new class of SGLT2 inhibitors, which promotes osmotic diuresis and the non-peptidic antagonists of the V2 receptor, which are pure aquaretic drugs. Disturbed water balance includes diabetes insipidus and hyponatremias. Diabetes insipidus is characterized by polyuria and polydipsia. It is either related to a deficit in AVP secretion called central diabetes insipidus that can be treated by AVP analogs or to a peripheral defect in AVP response called nephrogenic diabetes insipidus. Diabetes insipidus can be either of genetic origin or acquired. Hyponatremia is a common disorder most often related to free water excess relying on overstimulated or inappropriate AVP secretion. The assessment of blood volume is key for the diagnosis and treatment of hyponatremia, which can be classified as hypo-, eu-, or hypervolemic.


Subject(s)
Diabetes Insipidus, Nephrogenic , Diabetes Insipidus , Hyponatremia , Aquaporin 2 , Arginine Vasopressin , Diabetes Insipidus, Nephrogenic/genetics , Diabetes Insipidus, Nephrogenic/metabolism , Humans , Water/metabolism
4.
J Am Soc Nephrol ; 32(12): 3130-3145, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34615708

ABSTRACT

BACKGROUND: Active sodium reabsorption is the major factor influencing renal oxygen consumption and production of reactive oxygen species (ROS). Increased sodium reabsorption uses more oxygen, which may worsen medullary hypoxia and produce more ROS via enhanced mitochondrial ATP synthesis. Both mechanisms may activate the hypoxia-inducible factor (HIF) pathway. Because the collecting duct is exposed to low oxygen pressure and variations of active sodium transport, we assessed whether the HIF pathway controls epithelial sodium channel (ENaC)-dependent sodium transport. METHODS: We investigated HIF's effect on ENaC expression in mpkCCD cl4 cells (a model of collecting duct principal cells) using real-time PCR and western blot and ENaC activity by measuring amiloride-sensitive current. We also assessed the effect of hypoxia and sodium intake on abundance of kidney sodium transporters in wild-type and inducible kidney tubule-specific Hif1α knockout mice. RESULTS: In cultured cells, activation of the HIF pathway by dimethyloxalylglycine or hypoxia inhibited sodium transport and decreased expression of ß ENaC and γ ENaC, as well as of Na,K-ATPase. HIF1 α silencing increased ß ENaC and γ ENaC expression and stimulated sodium transport. A constitutively active mutant of HIF1 α produced the opposite effect. Aldosterone and inhibition of the mitochondrial respiratory chain slowly activated the HIF pathway, suggesting that ROS may also activate HIF. Decreased γ ENaC abundance induced by hypoxia in normal mice was abolished in Hif1α knockout mice. Similarly, Hif1α knockout led to increased γ ENaC abundance under high sodium intake. CONCLUSIONS: This study reveals that γ ENaC expression and activity are physiologically controlled by the HIF pathway, which may represent a negative feedback mechanism to preserve oxygenation and/or prevent excessive ROS generation under increased sodium transport.


Subject(s)
Kidney Tubules, Collecting , Sodium, Dietary , Mice , Animals , Epithelial Sodium Channels/metabolism , Kidney Tubules, Collecting/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Reactive Oxygen Species/metabolism , Sodium/metabolism , Sodium, Dietary/pharmacology , Mice, Knockout
5.
BMC Pulm Med ; 19(1): 83, 2019 May 03.
Article in English | MEDLINE | ID: mdl-31053123

ABSTRACT

BACKGROUND: Rosai-Dorfman disease (RDD) is a rare histiocytosis which involves principally lymph nodes. Thyroid involvement in RDD is a very rare situation, and lung involvement is even rarer. CASE PRESENTATION: We report the case of a 46-year-old woman presenting a painless mass in the right side of the neck and subacute dyspnoea. Computerised tomography (CT) scans of the neck and thorax showed a large thyroid mass causing tracheal stenosis and multiple cystic lesions in both lungs. Subtotal thyroidectomy with a tracheal segment resection and histological analysis confirmed the diagnosis of nodal and extranodal (thyroid, tracheal and probably lung) Rosai-Dorfman disease (RDD) with the presence of increased numbers of IgG4-bearing plasma cells. Clinical, functional and radiological follow up 4 years after surgery without medical treatment did not show any disease progression. CONCLUSIONS: This case report indicates a benign course of nodal RDD with thyroid and tracheal infiltration following surgical resection, association of typical histological signs of RDD (emperipolesis) with IgG4-related disease features, and that lung cysts might be a manifestation of RDD.


Subject(s)
Histiocytosis, Sinus/pathology , Histiocytosis, Sinus/surgery , Lymph Nodes/pathology , Thyroid Gland/pathology , Cysts/pathology , Diagnosis, Differential , Female , Humans , Immunoglobulin G/blood , Immunohistochemistry , Lung/pathology , Middle Aged , Plasma Cells/pathology , Thyroid Gland/growth & development , Thyroidectomy , Tomography, X-Ray Computed , Tracheal Stenosis/etiology
6.
Oncoimmunology ; 13(1): 2286820, 2024.
Article in English | MEDLINE | ID: mdl-38170044

ABSTRACT

Although immune-based therapies have revolutionized the management of cancer, novel approaches are urgently needed to improve their outcome. We investigated the role of endogenous steroids in the resistance to cancer immunotherapy, as these have strong immunomodulatory functions. Using a publicly available database, we found that the intratumoral expression of 11 beta-hydroxysteroid dehydrogenase type 1 (HSD11B1), which regenerates inactive glucocorticoids into active glucocorticoids, was associated with poor clinical outcome and correlated with immunosuppressive gene signatures in patients with renal cell carcinoma (RCC). HSD11B1 was mainly expressed in tumor-infiltrating immune myeloid cells as seen by immunohistochemistry in RCC patient samples. Using peripheral blood mononuclear cells from healthy donors or immune cells isolated from the tumor of RCC patients, we showed that the pharmacological inhibition of HSD11B1 improved the response to the immune checkpoint inhibitor anti-PD-1. In a subcutaneous mouse model of renal cancer, the combination of an HSD11B1 inhibitor with anti-PD-1 treatment increased the proportion of tumor-infiltrating dendritic cells. In an intrarenal mouse tumor model, HSD11B1 inhibition increased the survival of mice treated with anti-PD-1. In addition, inhibition of HSD11B1 sensitized renal tumors in mice to immunotherapy with resiquimod, a Toll-like receptor 7 agonist. Mechanistically, we demonstrated that HSD11B1 inhibition combined with resiquimod increased T cell-mediated cytotoxicity to tumor cells by stimulating the antigen-presenting capacity of dendritic cells. In conclusion, these results support the use of HSD11B1 inhibitors to improve the outcome of immunotherapy in renal cancer and highlight the role of the endogenous glucocorticoid metabolism in the efficacy of immunotherapy.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Animals , Mice , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Glucocorticoids/metabolism , Carcinoma, Renal Cell/drug therapy , Leukocytes, Mononuclear/metabolism , Kidney Neoplasms/drug therapy , Immunity , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism
7.
iScience ; 27(3): 109271, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38487013

ABSTRACT

The application of single-cell technologies in clinical nephrology remains elusive. We generated an atlas of transcriptionally defined cell types and cell states of human kidney disease by integrating single-cell signatures reported in the literature with newly generated signatures obtained from 5 patients with acute kidney injury. We used this information to develop kidney-specific cell-level information ExtractoR (K-CLIER), a transfer learning approach specifically tailored to evaluate the role of cell types/states on bulk RNAseq data. We validated the K-CLIER as a reliable computational framework to obtain a dimensionality reduction and to link clinical data with single-cell signatures. By applying K-CLIER on cohorts of patients with different kidney diseases, we identified the most relevant cell types associated with fibrosis and disease progression. This analysis highlighted the central role of altered proximal tubule cells in chronic kidney disease. Our study introduces a new strategy to exploit the power of single-cell technologies toward clinical applications.

8.
J Clin Med ; 10(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33804890

ABSTRACT

BACKGROUND: Mechanisms and causes of death in older patients with SARS-CoV-2 infection are still poorly understood. METHODS: We conducted in a retrospective monocentric study, a clinical chart review and post-mortem examination of patients aged 75 years and older hospitalized in acute care and positive for SARS-CoV-2. Full body autopsy and correlation with clinical findings and suspected causes of death were done. RESULTS: Autopsies were performed in 12 patients (median age 85 years; median of 4 comorbidities, mainly hypertension and cardiovascular disease). All cases showed exudative or proliferative phases of alveolar damage and/or a pattern of organizing pneumonia. Causes of death were concordant in 6 cases (50%), and undetected diagnoses were found in 6. Five patients died from hypoxemic respiratory failure due to coronavirus disease 2019 (COVID-19), five had another associated diagnosis and two died from alternative causes. Deaths that occurred in the second week were related to SARS-CoV-2 pneumonia whereas those occurring earlier were related mainly to heart failure and those occurring later to complications. CONCLUSIONS: Although COVID-19 hypoxemic respiratory failure was the most common cause of death, post-mortem pathological examination revealed that acute decompensation from chronic comorbidities during the first week of COVID-19 and complications in the third week contributed to mortality.

9.
Case Rep Gastroenterol ; 13(1): 200-206, 2019.
Article in English | MEDLINE | ID: mdl-31123447

ABSTRACT

Autoimmune pancreatitis (AIP) is a rare condition classified in 2 subtypes. Their distinction relies on a combination of clinical, serological, morphological and histological features. Type 1 is a pancreatic manifestation of IgG4-related disease characterized by multiorgan infiltration by IgG4 plasmocytes. In this condition, hepatobiliary infiltration is frequent and often mimics cholangiocarcinoma or primary sclerosing cholangitis. On the other hand, type 2 is commonly limited to the pancreas. Herein, we describe the case of a patient who presented a type 2 AIP associated with cholangiopathy, a condition not described in the established criteria. He first developed a pancreatitis identified as type 2 by the typical histopathological features and lack of IgG4 in the serum and tissue. Despite a good clinical response to steroids, cholestasis persisted, identified by MR cholangiography as a stricture of the left hepatic duct with dilatation of the intrahepatic bile duct in segments 2 and 3. Biliary cytology was negative. Evolution was favorable but after steroid tapering a few months later, the patient suffered from recurrence of the pancreatitis as well as progression of biliary attempt, suspicious for cholangiocarcinoma. As the investigations again ruled out neoplastic infiltration or primary sclerosing cholangitis, azathioprine was initiated with resolution of both pancreatic and biliary attempts.

10.
Int J Surg Pathol ; 26(3): 261-265, 2018 May.
Article in English | MEDLINE | ID: mdl-29212393

ABSTRACT

"Noninvasive follicular thyroid neoplasm with papillary-like nuclear features" (NIFTP) is a recent reclassification of the encapsulated follicular variant of papillary thyroid carcinoma, which is supposed to reflect its indolent clinical behavior and to prevent overtreatment of patients with this neoplasm. The diagnosis of NIFTP can only be made histologically on the surgical specimen according to specific inclusion and exclusion criteria, which requires the examination of the whole nodule and its capsule. Spindle cell proliferations, especially of follicular cell origin, arising within thyroid follicular neoplasms are very rare and may cause diagnostic difficulties. Few reports described spindle cell proliferations arising in follicular thyroid adenoma and papillary thyroid carcinoma. To the best of our knowledge, only one case has been reported in NIFTP so far. In this article, we report a unique case of NIFTP associated with a spindle cell proliferation that was characterized immunohistochemically. Specific issues related to this case are discussed.


Subject(s)
Adenocarcinoma, Follicular/pathology , Thyroid Neoplasms/pathology , Adult , Carcinoma, Papillary/pathology , Female , Humans , Metaplasia , Thyroid Cancer, Papillary
SELECTION OF CITATIONS
SEARCH DETAIL