Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Angew Chem Int Ed Engl ; 63(12): e202312402, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38227790

ABSTRACT

DNA crosslinking agents such as cisplatin and related platinum(II) analogs are effective drugs to treat solid tumors. However, these therapeutics can cause high toxicity in the body, and tumors can develop resistance to them. To develop less toxic and more effective DNA crosslinkers, medicinal chemists have focused on tuning the ligands in square planar platinum(II) complexes to modulate their bioavailability, targeted cell penetration, and DNA binding rates. Unfortunately, linking in vitro DNA binding capacity of DNA crosslinkers with their in vivo efficacy has proven challenging. Here we report an electrochemical biosensor strategy that allows the study of platinum(II)-DNA binding in real time. Our biosensors contain a purine-rich deoxynucleotide sequence, T6 (AG)10 , modified with a 5' hexylthiol linker for easy self-assembly onto gold electrodes. The 3' terminus is functionalized with the redox reporter methylene blue. Electron transfer from methylene blue to the sensor is a function of platinum(II) compound concentration and reaction time. Using these biosensors, we resolve DNA binding mechanisms including monovalent and bivalent binding, as well as base stacking. Our approach can measure DNA binding kinetics in buffers and in 50 % serum, offering a single-step, real-time approach to screen therapeutic compounds during drug development.


Subject(s)
Antineoplastic Agents , Neoplasms , Nucleic Acids , Humans , Platinum/chemistry , Methylene Blue/chemistry , Antineoplastic Agents/chemistry , DNA/chemistry
2.
Anal Chem ; 95(11): 4974-4983, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36881708

ABSTRACT

Nucleic acid-based electrochemical sensors (NBEs) can support continuous and highly selective molecular monitoring in biological fluids, both in vitro and in vivo, via affinity-based interactions. Such interactions afford a sensing versatility that is not supported by strategies that depend on target-specific reactivity. Thus, NBEs have significantly expanded the scope of molecules that can be monitored continuously in biological systems. However, the technology is limited by the lability of the thiol-based monolayers employed for sensor fabrication. Seeking to understand the main drivers of monolayer degradation, we studied four possible mechanisms of NBE decay: (i) passive desorption of monolayer elements in undisturbed sensors, (ii) voltage-induced desorption under continuous voltammetric interrogation, (iii) competitive displacement by thiolated molecules naturally present in biofluids like serum, and (iv) protein binding. Our results indicate that voltage-induced desorption of monolayer elements is the main mechanism by which NBEs decay in phosphate-buffered saline. This degradation can be overcome by using a voltage window contained between -0.2 and 0.2 V vs Ag|AgCl, reported for the first time in this work, where electrochemical oxygen reduction and surface gold oxidation cannot occur. This result underscores the need for chemically stable redox reporters with more positive reduction potentials than the benchmark methylene blue and the ability to cycle thousands of times between redox states to support continuous sensing for long periods. Additionally, in biofluids, the rate of sensor decay is further accelerated by the presence of thiolated small molecules like cysteine and glutathione, which can competitively displace monolayer elements even in the absence of voltage-induced damage. We hope that this work will serve as a framework to inspire future development of novel sensor interfaces aiming to eliminate the mechanisms of signal decay in NBEs.


Subject(s)
Biosensing Techniques , Nucleic Acids , Biosensing Techniques/methods , Electrodes , Oxidation-Reduction , DNA/chemistry , Electrochemical Techniques/methods
3.
Analyst ; 148(4): 806-813, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36632808

ABSTRACT

DNA-based electrochemical sensors use redox reporters to transduce affinity events into electrical currents. Ideally, such reporters must be electrochemically reversible, chemically stable for thousands of redox cycles, and tolerant to changing chemical environments. Here we report the first use of an Os(II/III) complex in DNA-based sensors, which undergoes pH-insensitive electron transfer with 35% better operational stability relative to the benchmark methylene blue, making it a promising reporter for continuous molecular monitoring applications where pH fluctuates with time.


Subject(s)
Biosensing Techniques , Methylene Blue , Methylene Blue/chemistry , Benchmarking , Electrochemical Techniques , DNA/genetics , DNA/chemistry , Hydrogen-Ion Concentration , Electrodes
4.
J Am Chem Soc ; 144(25): 11226-11237, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35675509

ABSTRACT

Rapid diagnostics that can accurately inform patients of disease risk and protection are critical to mitigating the spread of the current COVID-19 pandemic and future infectious disease outbreaks. To be effective, such diagnostics must rely on simple, cost-effective, and widely available equipment and should be compatible with existing telehealth infrastructure to facilitate data access and remote care. Commercial glucometers are an established detection technology that can overcome the cost, time, and trained personnel requirements of current benchtop-based antibody serology assays when paired with reporter molecules that catalyze glucose conversion. To this end, we developed an enzymatic reporter that, when bound to disease-specific patient antibodies, produces glucose in proportion to the level of antibodies present in the patient sample. Although a straightforward concept, the coupling of enzymatic reporters to secondary antibodies or antigens often results in low yields, indeterminant stoichiometry, reduced target binding, and poor catalytic efficiency. Our enzymatic reporter is a novel fusion protein that comprises an antihuman immunoglobulin G (IgG) antibody genetically fused to two invertase molecules. The resulting fusion protein retains the binding affinity and catalytic activity of the constituent proteins and serves as an accurate reporter for immunoassays. Using this fusion, we demonstrate quantitative glucometer-based measurement of anti-SARS-CoV-2 spike protein antibodies in blinded clinical sample training sets. Our results demonstrate the ability to detect SARS-CoV-2-specific IgGs in patient serum with precise agreement to benchmark commercial immunoassays. Because our fusion protein binds all human IgG isotypes, it represents a versatile tool for detection of disease-specific antibodies in a broad range of biomedical applications.


Subject(s)
COVID-19 , Pandemics , Antibodies, Viral , COVID-19/diagnosis , Glucose , Humans , Immunoglobulin G , SARS-CoV-2 , Sensitivity and Specificity , beta-Fructofuranosidase
5.
Anal Chem ; 94(23): 8335-8345, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35653647

ABSTRACT

The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models.


Subject(s)
Drug Monitoring , Needles , Animals , Biomarkers/analysis , Drug Monitoring/methods , Extracellular Fluid/chemistry , Oligonucleotides/analysis
6.
Anal Bioanal Chem ; 414(18): 5627-5641, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35352164

ABSTRACT

Electrochemical, aptamer-based (E-AB) sensors uniquely enable reagentless, reversible, and continuous molecular monitoring in biological fluids. Because of this ability, E-AB sensors have been proposed for therapeutic drug monitoring. However, to achieve translation from the bench to the clinic, E-AB sensors should ideally operate reliably and continuously for periods of days. Instead, because these sensors are typically fabricated on gold surfaces via self-assembly of alkanethiols that are prone to desorption from electrode surfaces, they undergo significant signal losses in just hours. To overcome this problem, our group is attempting to migrate E-AB sensor interfaces away from thiol-on-gold assembly towards stronger covalent bonds. Here, we explore the modification of carbon electrodes as an alternative substrate for E-AB sensors. We investigated three strategies to functionalize carbon surfaces: (I) anodization to generate surface carboxylic groups, (II) electrografting of arenediazonium ions, and (III) electrografting of primary aliphatic amines. Our results indicate that electrografting of primary aliphatic amines is the only strategy achieving monolayer organization and packing densities closely comparable to those obtained by alkanethiols on gold. In addition, the resulting monolayers enable covalent tethering of DNA aptamers and support electrochemical sensing of small molecule targets or complimentary DNA strands. These monolayers also achieve superior stability under continuous voltammetric interrogation in biological fluids relative to benchmark thiol-on-gold monolayers when a positive voltage scan window is used. Based on these results, we postulate the electrografting of primary aliphatic amines as a path forward to develop carbon-supported E-AB sensors with increased operational stability.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Amines , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Carbon , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Sulfhydryl Compounds/chemistry
7.
Angew Chem Int Ed Engl ; 61(45): e202211292, 2022 11 07.
Article in English | MEDLINE | ID: mdl-35999181

ABSTRACT

Human cyclophilin B (CypB) is oversecreted by pancreatic cancer cells, making it a potential biomarker for early-stage disease diagnosis. Our group is motivated to develop aptamer-based assays to measure CypB levels in biofluids. However, human cyclophilins have been postulated to have collateral nuclease activity, which could impede the use of aptamers for CypB detection. To establish if CypB can hydrolyze electrode-bound nucleic acids, we used ultrasensitive electrochemical sensors to measure CypB's hydrolytic activity. Our sensors use ssDNA and dsDNA in the biologically predominant d-DNA form, and in the nuclease resistant l-DNA form. Challenging such sensors with CypB and control proteins, we unequivocally demonstrate that CypB can cleave nucleic acids. To our knowledge, this is the first study to use electrochemical biosensors to reveal the hydrolytic activity of a protein that is not known to be a nuclease. Future development of CypB bioassays will require the use of nuclease-resistant aptamer sequences.


Subject(s)
Nucleic Acids , Pancreatic Neoplasms , Humans , Cyclophilins/metabolism , DNA , Endonucleases , Electrochemical Techniques
8.
Langmuir ; 37(17): 5213-5221, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33876937

ABSTRACT

Electrochemical aptamer-based (E-AB) sensors are a technology capable of real-time monitoring of drug concentrations directly in the body. These sensors achieve their selectivity from surface-attached aptamers, which alter their conformation upon target binding, thereby causing a change in electron transfer kinetics between aptamer-bound redox reporters and the electrode surface. Because, in theory, aptamers can be selected for nearly any target of interest, E-AB sensors have far-reaching potential for diagnostic and biomedical applications. However, a remaining critical weakness in the platform lies in the time-dependent, spontaneous degradation of the bioelectronic interface. This progressive degradation-seen in part as a continuous drop in faradaic current from aptamer-attached redox reporters-limits the in vivo operational life of E-AB sensors to less than 12 h, prohibiting their long-term application for continuous molecular monitoring in humans. In this work, we study the effects of nuclease action on the signaling lifetime of E-AB sensors, to determine whether the progressive signal loss is caused by hydrolysis of DNA aptamers and thus the loss of signaling moieties from the sensor surface. We continuously interrogate sensors deployed in several undiluted biological fluids at 37 °C and inject nuclease to reach physiologically relevant concentrations. By employing both naturally occurring d-DNA and the nuclease-resistant enantiomer l-DNA, we determine that within the current lifespan of state-of-the-art E-AB sensors, nuclease hydrolysis is not the dominant cause of sensor signal loss under the conditions we tested. Instead, signal loss is driven primarily by the loss of monolayer elements-both blocking alkanethiol and aptamer monolayers-from the electrode surface. While use of l-DNA aptamers may extend the E-AB operational life in the long term, the critical issue of passive monolayer loss must be addressed before those effects can be seen.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Electrodes , Humans , Hydrolysis
9.
Anal Chem ; 92(13): 8852-8858, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32489102

ABSTRACT

A promising strategy to lowering detection limits in electrochemical analysis is the active modulation of the electrode temperature. Specifically, by tuning the electrode's surface temperature one can enhance detection limits due to improved electrode process kinetics and increased mass transfer rates, all without affecting the bulk solution. Motivated by this argument, here we report the development of a new electroanalytical technique based on electrode-temperature modulation, which we call hot square wave voltammetry (Hot-SWV). The technique utilizes the superposition of conventional SWV, already considered as one of the most sensitive voltammetric techniques, and a high frequency alternating current (ac) waveform to electrically polarize microelectrodes. By applying about 100 MHz ac frequencies (with varying Vrms amplitudes), our method generates an electrothermal fluid flow (ETF) in the electrolyte surrounding the electrode, thereby increasing the sensitivity of the SWV-based detection. We demonstrate this by investigating the oxidation of ferrocyanide and iron(II) ions, as well as the reduction of the coordination compound ruthenium(III) hexamine under various experimental conditions. We validate our experimental results against a theoretical model built using finite element analysis and observe agreement within ≤15% error at temperatures ≤39 °C. Using Hot-SWV, we observe at least one-order-of-magnitude improvement in the limit of detection of ferrocyanide ions relative to conventional, mm-size electrodes at 25 °C. In addition, we anticipate that Hot-SWV will be particularly useful for electroanalytical measurements of ultralow (≤pM) concentrations of analytes in environmental and biomedical applications.

10.
Proc Natl Acad Sci U S A ; 114(4): 645-650, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28069939

ABSTRACT

The development of a technology capable of tracking the levels of drugs, metabolites, and biomarkers in the body continuously and in real time would advance our understanding of health and our ability to detect and treat disease. It would, for example, enable therapies guided by high-resolution, patient-specific pharmacokinetics (including feedback-controlled drug delivery), opening new dimensions in personalized medicine. In response, we demonstrate here the ability of electrochemical aptamer-based (E-AB) sensors to support continuous, real-time, multihour measurements when emplaced directly in the circulatory systems of living animals. Specifically, we have used E-AB sensors to perform the multihour, real-time measurement of four drugs in the bloodstream of even awake, ambulatory rats, achieving precise molecular measurements at clinically relevant detection limits and high (3 s) temporal resolution, attributes suggesting that the approach could provide an important window into the study of physiology and pharmacokinetics.


Subject(s)
Pharmaceutical Preparations/blood , Pharmaceutical Preparations/metabolism , Small Molecule Libraries/metabolism , Animals , Aptamers, Nucleotide/metabolism , Biosensing Techniques/methods , Cattle , Humans , Limit of Detection , Male , Rats , Rats, Sprague-Dawley
11.
J Am Chem Soc ; 141(3): 1304-1311, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30605323

ABSTRACT

Despite 25 years' effort, serious questions remain regarding the mechanism(s) underlying electron transfer through (or from) electrode-bound double-stranded DNA. In part this is because a control experiment regarding the putatively critical role of guanine bases in the most widely proposed transport mechanism (hopping from guanine to guanine through the π-stack) appears to be lacking from the prior literature. In response, we have employed chronoamperometry, which allows for high-precision determination of electron transfer rates, to characterize transfer to a redox reporter appended onto electrode-bound DNA duplexes. Specifically, we have measured the effects of guanines and base mismatches on the electron transfer rate associated with such constructs. Upon doing so, we find that, counter to prior reports, the transfer rate is, to within relatively tight experimental confidence intervals, unaffected by either. Parallel studies of the dependence of the electron transfer rate on the length of the DNA suggest that transfer from this system obeys a "collision" mechanism in which the redox reporter physically contacts the electrode surface prior to the exchange of electrons.


Subject(s)
DNA/chemistry , Electrons , Guanine/chemistry , Base Pair Mismatch , Base Sequence , DNA/genetics , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Kinetics , Methylene Blue/chemistry
12.
Anal Chem ; 91(19): 12321-12328, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31462040

ABSTRACT

Electrochemical sensors are major players in the race for improved molecular diagnostics due to their convenience, temporal resolution, manufacturing scalability, and their ability to support real-time measurements. This is evident in the ever-increasing number of health-related electrochemical sensing platforms, ranging from single-measurement point-of-care devices to wearable devices supporting immediate and continuous monitoring. In support of the need for such systems to rapidly process large data volumes, we describe here an open-source, easily customizable, multiplatform compatible program for the real-time control, processing, and visualization of electrochemical data. The software's architecture is modular and fully documented, allowing the easy customization of the code to support the processing of voltammetric (e.g., square-wave and cyclic) and chronoamperometric data. The program, which we have called Software for the Analysis and Continuous Monitoring of Electrochemical Systems (SACMES), also includes a graphical interface allowing the user to easily change analysis parameters (e.g., signal/noise processing, baseline correction) in real-time. To demonstrate the versatility of SACMES we use it here to analyze the real-time data output by (1) the electrochemical, aptamer-based measurement of a specific small-molecule target, (2) a monoclonal antibody-detecting DNA-scaffold sensor, and (3) the determination of the folding thermodynamics of an electrode-attached, redox-reporter-modified protein.


Subject(s)
Electrochemistry/methods , Software , Animals , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/metabolism , Base Sequence , Biosensing Techniques , DNA/analysis , Electronic Data Processing , Male , Protein Folding , Rats , Rats, Sprague-Dawley , Signal-To-Noise Ratio , Time Factors
13.
Angew Chem Int Ed Engl ; 58(6): 1714-1718, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30549169

ABSTRACT

Despite the importance of protein-surface interactions in both biology and biotechnology, our understanding of their origins is limited due to a paucity of experimental studies of the thermodynamics behind such interactions. In response, we have characterized the extent to which interaction with a chemically well-defined macroscopic surface alters the stability of protein L. To do so, we site-specifically attached a redox-reporter-modified protein variant to a hydroxy-terminated monolayer on a gold surface and then used electrochemistry to monitor its guanidine denaturation and determine its folding free energy. Comparison with the free energy seen in solution indicates that interaction with this surface stabilizes the protein by 6 kJ mol-1 , a value that is in good agreement with theoretical estimates of the entropic consequences of surface-induced excluded volume effects, thus suggesting that chemically specific interactions with this surface (e.g., electrostatic interactions) are limited in magnitude.


Subject(s)
Gold/chemistry , Proteins/chemistry , Thermodynamics , Electrochemical Techniques , Protein Folding , Protein Stability , Static Electricity , Surface Properties
15.
Anal Chem ; 89(22): 12185-12191, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29076341

ABSTRACT

The electrochemical, aptamer-based (E-AB) sensor platform provides a modular approach to the continuous, real-time measurement of specific molecular targets (irrespective of their chemical reactivity) in situ in the living body. To achieve this, however, requires the fabrication of sensors small enough to insert into a vein, which, for the rat animal model we employ, entails devices less than 200 µm in diameter. The limited surface area of these small devices leads, in turn, to low faradaic currents and poor signal-to-noise ratios when deployed in the complex, fluctuating environments found in vivo. In response we have developed an electrochemical roughening approach that enhances the signaling of small electrochemical sensors by increasing the microscopic surface area of gold electrodes, allowing in this case more redox-reporter-modified aptamers to be packed onto the surface, thus producing significantly improved signal-to-noise ratios. Unlike previous approaches to achieving microscopically rough gold surfaces, our method employs chronoamperometric pulsing in a 5 min etching process easily compatible with batch manufacturing. Using these high surface area electrodes, we demonstrate the ability of E-AB sensors to measure complete drug pharmacokinetic profiles in live rats with precision of better than 10% in the determination of drug disposition parameters.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , Electrochemical Techniques , Animals , Electrodes , Particle Size , Rats , Surface Properties
16.
Langmuir ; 33(18): 4407-4413, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28391695

ABSTRACT

The efficiency with which square-wave voltammetry differentiates faradic and charging currents makes it a particularly sensitive electroanalytical approach, as evidenced by its ability to measure nanomolar or even picomolar concentrations of electroactive analytes. Because of the relative complexity of the potential sweep it uses, however, the extraction of detailed kinetic and mechanistic information from square-wave data remains challenging. In response, we demonstrate here a numerical approach by which square-wave data can be used to determine electron transfer rates. Specifically, we have developed a numerical approach in which we model the height and the shape of voltammograms collected over a range of square-wave frequencies and amplitudes to simulated voltammograms as functions of the heterogeneous rate constant and the electron transfer coefficient. As validation of the approach, we have used it to determine electron transfer kinetics in both freely diffusing and diffusionless surface-tethered species, obtaining electron transfer kinetics in all cases in good agreement with values derived using non-square-wave methods.


Subject(s)
Electrons , Electron Transport , Kinetics
18.
Angew Chem Int Ed Engl ; 56(26): 7492-7495, 2017 06 19.
Article in English | MEDLINE | ID: mdl-28371090

ABSTRACT

The real-time monitoring of specific analytes in situ in the living body would greatly advance our understanding of physiology and the development of personalized medicine. Because they are continuous (wash-free and reagentless) and are able to work in complex media (e.g., undiluted serum), electrochemical aptamer-based (E-AB) sensors are promising candidates to fill this role. E-AB sensors suffer, however, from often-severe baseline drift when deployed in undiluted whole blood either in vitro or in vivo. We demonstrate that cell-membrane-mimicking phosphatidylcholine (PC)-terminated monolayers improve the performance of E-AB sensors, reducing the baseline drift from around 70 % to just a few percent after several hours in flowing whole blood in vitro. With this improvement comes the ability to deploy E-AB sensors directly in situ in the veins of live animals, achieving micromolar precision over many hours without the use of physical barriers or active drift-correction algorithms.


Subject(s)
Aptamers, Nucleotide/chemistry , Biomimetics , Biosensing Techniques , Electrochemical Techniques/instrumentation , Phosphatidylcholines/chemistry , Algorithms , Animals , Blood Chemical Analysis/instrumentation , Cell Membrane/chemistry
19.
J Am Chem Soc ; 138(49): 15809-15812, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960346

ABSTRACT

The continuous, real-time monitoring of specific molecular targets in unprocessed clinical samples would enable many transformative medical applications. Electrochemical aptamer-based (E-AB) sensors appear to be a promising approach to this end because of their selectivity (performance in complex samples, such as serum) and reversible, single-step operation. E-AB sensors suffer, however, from often-severe baseline drift when challenged in undiluted whole blood. In response we report here a dual-reporter approach to performing E-AB baseline drift correction. The approach incorporates two redox reporters on the aptamer, one of which serves as the target-responsive sensor and the other, which reports at a distinct, nonoverlapping redox potential, serving as a drift-correcting reference. Taking the difference in their relative signals largely eliminates the drift observed for these sensors in flowing, undiluted whole blood, reducing drift of up to 50% to less than 2% over many hours of continuous operation under these challenging conditions.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , Electrochemical Techniques , Aptamers, Nucleotide/blood , Humans
20.
Anal Chem ; 88(20): 10284-10289, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27659801

ABSTRACT

We report the crucial components required to perform scanning electrochemical microscopy (SECM) with nanometer-scale resolution. The construction and modification of the software and hardware instrumentation for nanoscale SECM are explicitly explained including (1) the LabVIEW code that synchronizes the SECM tip movement with the electrochemical response, (2) the construction of an isothermal chamber to stabilize the nanometer scale gap between the tip and substrate, (3) the modification of a commercial bipotentiostat to avoid electrochemical tip damage during SECM experiments, and (4) the construction of an SECM stage to avoid artifacts in SECM images. These findings enabled us to successfully build a nanoscale SECM, which can be utilized to map the electrocatalytic activity of individual nanoparticles in a typical ensemble sample and study the structure/reactivity relationship of single nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL