ABSTRACT
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
ABSTRACT
Homologous recombination (HR) is essential for high-fidelity DNA repair during mitotic proliferation and meiosis. Yet, context-specific modifications must tailor the recombination machinery to avoid (mitosis) or enforce (meiosis) the formation of reciprocal exchanges-crossovers-between recombining chromosomes. To obtain molecular insight into how crossover control is achieved, we affinity purified 7 DNA-processing enzymes that channel HR intermediates into crossovers or noncrossovers from vegetative cells or cells undergoing meiosis. Using mass spectrometry, we provide a global characterization of their composition and reveal mitosis- and meiosis-specific modules in the interaction networks. Functional analyses of meiosis-specific interactors of MutLγ-Exo1 identified Rtk1, Caf120, and Chd1 as regulators of crossing-over. Chd1, which transiently associates with Exo1 at the prophase-to-metaphase I transition, enables the formation of MutLγ-dependent crossovers through its conserved ability to bind and displace nucleosomes. Thus, rewiring of the HR network, coupled to chromatin remodeling, promotes context-specific control of the recombination outcome.
Subject(s)
Crossing Over, Genetic/physiology , Meiosis/physiology , Mitosis/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Mass Spectrometry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/geneticsABSTRACT
Meiotic defects derived from incorrect DNA repair during gametogenesis can lead to mutations, aneuploidies and infertility. The coordinated resolution of meiotic recombination intermediates is required for crossover formation, ultimately necessary for the accurate completion of both rounds of chromosome segregation. Numerous master kinases orchestrate the correct assembly and activity of the repair machinery. Although much less is known, the reversal of phosphorylation events in meiosis must also be key to coordinate the timing and functionality of repair enzymes. Cdc14 is a crucial phosphatase required for the dephosphorylation of multiple CDK1 targets in many eukaryotes. Mutations that inactivate this phosphatase lead to meiotic failure, but until now it was unknown if Cdc14 plays a direct role in meiotic recombination. Here, we show that the elimination of Cdc14 leads to severe defects in the processing and resolution of recombination intermediates, causing a drastic depletion in crossovers when other repair pathways are compromised. We also show that Cdc14 is required for the correct activity and localization of the Holliday Junction resolvase Yen1/GEN1. We reveal that Cdc14 regulates Yen1 activity from meiosis I onwards, and this function is essential for crossover resolution in the absence of other repair pathways. We also demonstrate that Cdc14 and Yen1 are required to safeguard sister chromatid segregation during the second meiotic division, a late action that is independent of the earlier role in crossover formation. Thus, this work uncovers previously undescribed functions of the evolutionary conserved Cdc14 phosphatase in the regulation of meiotic recombination.
Subject(s)
CDC2 Protein Kinase/genetics , Cell Cycle Proteins/genetics , Holliday Junction Resolvases/genetics , Meiosis/genetics , Protein Tyrosine Phosphatases/genetics , Saccharomyces cerevisiae Proteins/genetics , Chromosome Segregation/genetics , Crossing Over, Genetic/genetics , DNA Repair/genetics , DNA, Cruciform/genetics , Gametogenesis/genetics , Homologous Recombination/genetics , Mutation/genetics , Phosphorylation/genetics , Saccharomyces cerevisiae/geneticsABSTRACT
Constructing gene circuits that satisfy quantitative performance criteria has been a long-standing challenge in synthetic biology. Here, we show a strategy for optimizing a complex three-gene circuit, a novel proportional miRNA biosensor, using predictive modeling to initiate a search in the phase space of sensor genetic composition. We generate a library of sensor circuits using diverse genetic building blocks in order to access favorable parameter combinations and uncover specific genetic compositions with greatly improved dynamic range. The combination of high-throughput screening data and the data obtained from detailed mechanistic interrogation of a small number of sensors was used to validate the model. The validated model facilitated further experimentation, including biosensor reprogramming and biosensor integration into larger networks, enabling in principle arbitrary logic with miRNA inputs using normal form circuits. The study reveals how model-guided generation of genetic diversity followed by screening and model validation can be successfully applied to optimize performance of complex gene networks without extensive prior knowledge.
Subject(s)
Gene Regulatory Networks , Genes, Synthetic , High-Throughput Screening Assays/methods , Biosensing Techniques , Gene Library , MicroRNAs/genetics , Models, Genetic , Synthetic BiologyABSTRACT
DNA double-strand breaks that initiate meiotic recombination are formed by the topoisomerase-relative enzyme Spo11, supported by conserved auxiliary factors. Because high-resolution structural data have not been available, many questions remain about the architecture of Spo11 and its partners and how they engage with DNA. We report cryo-electron microscopy structures at up to 3.3-Å resolution of DNA-bound core complexes of Saccharomyces cerevisiae Spo11 with Rec102, Rec104 and Ski8. In these structures, monomeric core complexes make extensive contacts with the DNA backbone and with the recessed 3'-OH and first 5' overhanging nucleotide, establishing the molecular determinants of DNA end-binding specificity and providing insight into DNA cleavage preferences in vivo. The structures of individual subunits and their interfaces, supported by functional data in yeast, provide insight into the role of metal ions in DNA binding and uncover unexpected structural variation in homologs of the Top6BL component of the core complex.
ABSTRACT
Sexually reproducing eukaryotes employ a developmentally regulated cell division program-meiosis-to generate haploid gametes from diploid germ cells. To understand how gametes arise, we generated a proteomic census encompassing the entire meiotic program of budding yeast. We found that concerted waves of protein expression and phosphorylation modify nearly all cellular pathways to support meiotic entry, meiotic progression, and gamete morphogenesis. Leveraging this comprehensive resource, we pinpointed dynamic changes in mitochondrial components and showed that phosphorylation of the FoF1-ATP synthase complex is required for efficient gametogenesis. Furthermore, using cryoET as an orthogonal approach to visualize mitochondria, we uncovered highly ordered filament arrays of Ald4ALDH2, a conserved aldehyde dehydrogenase that is highly expressed and phosphorylated during meiosis. Notably, phosphorylation-resistant mutants failed to accumulate filaments, suggesting that phosphorylation regulates context-specific Ald4ALDH2 polymerization. Overall, this proteomic census constitutes a broad resource to guide the exploration of the unique sequence of events underpinning gametogenesis.
Subject(s)
Gametogenesis , Meiosis , Proteome , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Phosphorylation , Proteome/metabolism , Gametogenesis/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Proteomics/methods , Mitochondria/metabolism , Gene Expression Regulation, Fungal , Saccharomycetales/metabolism , Saccharomycetales/geneticsABSTRACT
The DNA double-strand breaks that initiate meiotic recombination are formed by topoisomerase relative Spo11, supported by conserved auxiliary factors. Because high-resolution structural data are lacking, many questions remain about the architecture of Spo11 and its partners and how they engage with DNA. We report cryo-EM structures at up to 3.3 Å resolution of DNA-bound core complexes of Saccharomyces cerevisiae Spo11 with Rec102, Rec104, and Ski8. In these structures, monomeric core complexes make extensive contacts with the DNA backbone and with the recessed 3'-OH and first 5' overhanging nucleotide, definitively establishing the molecular determinants of DNA end-binding specificity and providing insight into DNA cleavage preferences in vivo. The structures of individual subunits and their interfaces, supported by functional data in yeast, provide insight into the role of metal ions in DNA binding and uncover unexpected structural variation in homologs of the Top6BL component of the core complex.
ABSTRACT
Meiosis depends on the cell's ability to match each chromosome to its homolog in a strictly pairwise fashion. A new study describes an elegant mechanism that tetraploid Arabidopsis arenosa plants evolved to faithfully connect and segregate pairs of homologous chromosomes.
Subject(s)
Arabidopsis , Meiosis , Arabidopsis/genetics , Chromosomes, Plant/genetics , Polyploidy , TetraploidyABSTRACT
During meiosis, crossover recombination promotes the establishment of physical connections between homologous chromosomes, enabling their bipolar segregation. To ensure that persistent recombination intermediates are disengaged prior to the completion of meiosis, the Yen1(GEN1) resolvase is strictly activated at the onset of anaphase II. Whether controlled activation of Yen1 is important for meiotic crossing-over is unknown. Here, we show that CDK-mediated phosphorylation of Yen1 averts its pervasive recruitment to recombination intermediates during prophase I. Yen1 mutants that are refractory to phosphorylation resolve DNA joint molecules prematurely and form crossovers independently of MutLγ, the central crossover resolvase during meiosis. Despite bypassing the requirement for MutLγ in joint molecule processing and promoting crossover-specific resolution, unrestrained Yen1 impairs the spatial distribution of crossover events, genome-wide. Thus, active suppression of Yen1 function, and by inference also of Mus81-Mms4(EME1) and Slx1-Slx4(BTBD12) resolvases, avoids precocious resolution of recombination intermediates to enable meiotic crossover patterning.
Subject(s)
Holliday Junction Resolvases/genetics , Holliday Junction Resolvases/metabolism , Meiotic Prophase I/physiology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Chromosomes, Fungal , Crossing Over, Genetic , DNA Repair , DNA-Binding Proteins/metabolism , Endonucleases/physiology , Meiotic Prophase I/genetics , Phosphorylation , Saccharomyces cerevisiae/cytologyABSTRACT
Yeast is a powerful model for systems genetics. We present a versatile, time- and labor-efficient method to functionally explore the Saccharomyces cerevisiae genome using saturated transposon mutagenesis coupled to high-throughput sequencing. SAturated Transposon Analysis in Yeast (SATAY) allows one-step mapping of all genetic loci in which transposons can insert without disrupting essential functions. SATAY is particularly suited to discover loci important for growth under various conditions. SATAY (1) reveals positive and negative genetic interactions in single and multiple mutant strains, (2) can identify drug targets, (3) detects not only essential genes, but also essential protein domains, (4) generates both null and other informative alleles. In a SATAY screen for rapamycin-resistant mutants, we identify Pib2 (PhosphoInositide-Binding 2) as a master regulator of TORC1. We describe two antagonistic TORC1-activating and -inhibiting activities located on opposite ends of Pib2. Thus, SATAY allows to easily explore the yeast genome at unprecedented resolution and throughput.
Subject(s)
Genes, Fungal , Genetics, Microbial/methods , Molecular Sequence Annotation/methods , Mutagenesis, Insertional/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , DNA Transposable Elements , Genome, Fungal , Sequence Analysis, DNAABSTRACT
While DNA replication and mitosis occur in a sequential manner, precisely how cells maintain their temporal separation and order remains elusive. Here, we unveil a double-negative feedback loop between replication intermediates and an M-phase-specific structure-selective endonuclease, MUS81-SLX4, which renders DNA replication and mitosis mutually exclusive. MUS81 nuclease is constitutively active throughout the cell cycle but requires association with SLX4 for efficient substrate targeting. To preclude toxic processing of replicating chromosomes, WEE1 kinase restrains CDK1 and PLK1-mediated MUS81-SLX4 assembly during S phase. Accordingly, WEE1 inhibition triggers widespread nucleolytic breakage of replication intermediates, halting DNA replication and leading to chromosome pulverization. Unexpectedly, premature entry into mitosis-licensed by unrestrained CDK1 activity during S phase-requires MUS81-SLX4, which inhibits DNA replication. This suggests that ongoing replication assists WEE1 in delaying entry into M phase and, indirectly, in preventing MUS81-SLX4 assembly. Conversely, MUS81-SLX4 activation during mitosis promotes targeted resolution of persistent replication intermediates, which safeguards chromosome segregation.
Subject(s)
Chromosomes, Human/metabolism , DNA Damage , DNA Replication , Mitosis , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/metabolism , Cell Death , Cell Survival , DNA Fragmentation , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , HeLa Cells , Humans , Models, Biological , Phosphorylation , Protein Binding , Recombinases/metabolism , S PhaseABSTRACT
Timely removal of DNA recombination intermediates is critical for genome stability. The DNA helicase-topoisomerase complex, Sgs1-Top3-Rmi1 (STR), is the major pathway for processing these intermediates to generate conservative products. However, the mechanisms that promote STR-mediated functions remain to be defined. Here we show that Sgs1 binds to poly-SUMO chains and associates with the Smc5/6 SUMO E3 complex in yeast. Moreover, these interactions contribute to the sumoylation of Sgs1, Top3, and Rmi1 upon the generation of recombination structures. We show that reduced STR sumoylation leads to accumulation of recombination structures, and impaired growth in conditions when these structures arise frequently, highlighting the importance of STR sumoylation. Mechanistically, sumoylation promotes STR inter-subunit interactions and accumulation at DNA repair centers. These findings expand the roles of sumoylation and Smc5/6 in genome maintenance by demonstrating that they foster STR functions in the removal of recombination intermediates.