Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Anal Chem ; 89(6): 3452-3459, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28230966

ABSTRACT

Full scan field asymmetric waveform ion mobility spectrometry (FAIMS) combined with liquid chromatography and mass spectrometry (LC-FAIMS-MS) is shown to enhance peak capacity for omics applications. A miniaturized FAIMS device capable of rapid compensation field scanning has been incorporated into an ultrahigh performance liquid chromatography (UHPLC) and time-of-flight mass spectrometry analysis, allowing the acquisition of full scan FAIMS and MS nested data sets within the time scale of a UHPLC peak. Proof of principle for the potential of scanning LC-FAIMS-MS in omics applications is demonstrated for the nontargeted profiling of human urine using a HILIC column. The high level of orthogonality between FAIMS and MS provides additional unique compound identifiers with detection of features based on retention time, FAIMS dispersion field and compensation field (DF and CF), and mass-to-charge (m/z). Extracted FAIMS full scan data can be matched to standards to aid the identification of unknown analytes. The peak capacity for features detected in human urine using LC-FAIMS-MS was increased approximately threefold compared to LC-MS alone due to a combination of the reduction of chemical noise and separation of coeluting isobaric species across the entire analytical space. The use of FAIMS-selected in source collision induced dissociation (FISCID) yields fragmentation of ions, which reduces sample complexity associated with overlapping fragmentation patterns and provides structural information on the selected precursor ions.

2.
Anal Chem ; 89(14): 7431-7437, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28613840

ABSTRACT

The combination of field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry (LC-FAIMS-MS) has been developed for the analysis of glucuronide and sulfate metabolites of seven anabolic-androgenic steroids in urine. Separation by FAIMS-MS was investigated in positive ion mode for selected cationic adducts (H+, NH4+, Na+, K+, and Cs+). LC-FAIMS-MS analysis of the doubly sodiated adducts ([M + 2Na - H]+) of isobaric and coeluting steroid metabolites allowed their rapid (8 min) qualitative and quantitative determination in spiked urine using hydrophilic interaction liquid chromatography prior to FAIMS-MS separation, with discrimination >95% achieved between the steroids investigated. A quantitative evaluation of the LC-FAIMS-MS method was performed giving limits of detection in the range 1-6 ng mL-1, limits of quantification in the range 3-20 ng mL-1, with reproducibility (%RSD < 10%; n = 6) and linearity (R2 > 0.99). The LC-FAIMS-MS method demonstrates increases in signal-to-noise ratios for the doubly sodiated steroid metabolites in unspiked urine (>250%) by the reduction of isobaric interferences from the matrix. An alternative or additional tool for identification of the steroid metabolites is based on the observations of different patterns of sodium acetate clusters that are characteristic for each metabolite.


Subject(s)
Testosterone Congeners/urine , Chromatography, Liquid , Humans , Ion Mobility Spectrometry , Tandem Mass Spectrometry , Testosterone Congeners/metabolism
3.
J Am Soc Mass Spectrom ; 27(5): 800-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26914231

ABSTRACT

Miniaturised field asymmetric waveform ion mobility spectrometry (FAIMS), combined with mass spectrometry (MS), has been applied to the study of self-assembling, noncovalent supramolecular complexes of 3-methylxanthine (3-MX) in the gas phase. 3-MX forms stable tetrameric complexes around an alkali metal (Na(+), K(+)) or ammonium cation, to generate a diverse array of complexes with single and multiple charge states. Complexes of (3-MX)n observed include: singly charged complexes where n = 1-8 and 12 and doubly charged complexes where n = 12-24. The most intense ions are those associated with multiples of tetrameric units, where n = 4, 8, 12, 16, 20, 24. The effect of dispersion field on the ion intensities of the self-assembled complexes indicates some fragmentation of higher order complexes within the FAIMS electrodes (in-FAIMS dissociation), as well as in-source collision induced dissociation within the mass spectrometer. FAIMS-MS enables charge state separation of supramolecular complexes of 3-MX and is shown to be capable of separating species with overlapping mass-to-charge ratios. FAIMS selected transmission also results in an improvement in signal-to-noise ratio for low intensity complexes and enables the visualization of species undetectable without FAIMS.

4.
Bioanalysis ; 8(13): 1325-36, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27277875

ABSTRACT

AIM: Breath analyses have potential to detect early signs of disease onset. Ambient ionization allows direct combination of breath gases with MS for fast, on-line analysis. Portable MS systems would facilitate field/clinic-based breath analyses. Results & methodology: Volunteers ingested peppermint oil capsules and exhaled volatile compounds were monitored over 10 h using a compact mass spectrometer. A rise and fall in exhaled menthone was observed, peaking at 60-120 min. Real-time analysis showed a gradual rise in exhaled menthone postingestion. Sensitivity was comparable to established methods, with detection in the parts per trillion range. CONCLUSION: Breath volatiles were readily analyzed on a portable mass spectrometer through a simple inlet modification. Induced changes in exhaled profiles were detectable with high sensitivity and measurable in real-time.


Subject(s)
Breath Tests/instrumentation , Mass Spectrometry/instrumentation , Menthol/analysis , Plant Oils/analysis , Volatile Organic Compounds/analysis , Adult , Atmospheric Pressure , Equipment Design , Exhalation , Female , Humans , Male , Mentha piperita , Menthol/metabolism , Middle Aged , Plant Oils/administration & dosage , Plant Oils/metabolism , Point-of-Care Systems , Respiration , Volatile Organic Compounds/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL