Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(3): 624-641.e23, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38211590

ABSTRACT

The therapeutic potential for human type 2 innate lymphoid cells (ILC2s) has been underexplored. Although not observed in mouse ILC2s, we found that human ILC2s secrete granzyme B (GZMB) and directly lyse tumor cells by inducing pyroptosis and/or apoptosis, which is governed by a DNAM-1-CD112/CD155 interaction that inactivates the negative regulator FOXO1. Over time, the high surface density expression of CD155 in acute myeloid leukemia cells impairs the expression of DNAM-1 and GZMB, thus allowing for immune evasion. We describe a reliable platform capable of up to 2,000-fold expansion of human ILC2s within 4 weeks, whose molecular and cellular ILC2 profiles were validated by single-cell RNA sequencing. In both leukemia and solid tumor models, exogenously administered expanded human ILC2s show significant antitumor effects in vivo. Collectively, we demonstrate previously unreported properties of human ILC2s and identify this innate immune cell subset as a member of the cytolytic immune effector cell family.


Subject(s)
Granzymes , Immunity, Innate , Lymphocytes , Neoplasms , Animals , Humans , Mice , Apoptosis , Cytokines , Neoplasms/immunology , Neoplasms/therapy
2.
Cell ; 187(1): 44-61.e17, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38134932

ABSTRACT

Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1GoF) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1GoF expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPß was dependent on JAK1 in the vagus nerve, and CGRPß suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.


Subject(s)
Dermatitis, Atopic , Immunity, Innate , Lung , Sensory Receptor Cells , Animals , Humans , Mice , Cytokines , Dermatitis, Atopic/immunology , Inflammation , Lung/immunology , Lymphocytes , Sensory Receptor Cells/enzymology
3.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35051369

ABSTRACT

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Subject(s)
Gastrointestinal Microbiome/genetics , Genes, Bacterial , Animals , Bile Acids and Salts/metabolism , CRISPR-Cas Systems/genetics , Clostridium/genetics , Colitis/chemically induced , Colitis/microbiology , Colitis/pathology , Dextran Sulfate , Drug Resistance, Microbial/genetics , Female , Gene Expression Regulation, Bacterial , Gene Transfer Techniques , Germ-Free Life , Inflammation/pathology , Intestines/pathology , Male , Metabolome/genetics , Metagenomics , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Insertional/genetics , Mutation/genetics , RNA, Ribosomal, 16S/genetics , Transcription, Genetic
4.
Cell ; 185(22): 4170-4189.e20, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36240781

ABSTRACT

Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice , Animals , Gastrointestinal Microbiome/physiology , Nociceptors/physiology , Substance P , Dysbiosis , Inflammation
5.
Immunity ; 57(1): 14-27, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38198849

ABSTRACT

Nutrition profoundly shapes immunity and inflammation across the lifespan of mammals, from pre- and post-natal periods to later life. Emerging insights into diet-microbiota interactions indicate that nutrition has a dominant influence on the composition-and metabolic output-of the intestinal microbiota, which in turn has major consequences for host immunity and inflammation. Here, we discuss recent findings that support the concept that dietary effects on microbiota-derived metabolites potently alter immune responses in health and disease. We discuss how specific dietary components and metabolites can be either pro-inflammatory or anti-inflammatory in a context- and tissue-dependent manner during infection, chronic inflammation, and cancer. Together, these studies emphasize the influence of diet-microbiota crosstalk on immune regulation that will have a significant impact on precision nutrition approaches and therapeutic interventions for managing inflammation, infection, and cancer immunotherapy.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Neoplasms , Animals , Inflammation , Cross Reactions , Neoplasms/therapy , Mammals
6.
Cell ; 173(3): 554-567, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677509

ABSTRACT

The essential roles played by the immune system in the discrimination between self- versus non/altered-self and its integral role in promoting host defense against invading microbes and tumors have been extensively studied for many years. In these contexts, significant advances have been made in defining the molecular and cellular networks that orchestrate cell-cell communication to mediate host defense and pathogen expulsion. Notably, recent studies indicate that in addition to these classical immune functions, cells of the innate and adaptive immune system also sense complex tissue- and environment-derived signals, including those from the nervous system and the diet. In turn these responses regulate physiologic processes in multiple tissues throughout the body, including nervous system function, metabolic state, thermogenesis, and tissue repair. In this review we propose an integrated view of how the mammalian immune system senses and interacts with other complex organ systems to maintain tissue and whole-body homeostasis.


Subject(s)
Energy Metabolism , Immune System/physiology , Immunity, Innate/physiology , Adaptive Immunity , Animals , Cell Communication , Diet , Homeostasis , Host-Pathogen Interactions , Humans , Inflammation , Neurons/physiology , Regeneration , Sympathetic Nervous System , Vasoactive Intestinal Peptide/chemistry
7.
Cell ; 174(5): 1054-1066, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30142344

ABSTRACT

Innate lymphoid cells (ILCs) are lymphocytes that do not express the type of diversified antigen receptors expressed on T cells and B cells. ILCs are largely tissue-resident cells and are deeply integrated into the fabric of tissues. The discovery and investigation of ILCs over the past decade has changed our perception of immune regulation and how the immune system contributes to the maintenance of tissue homeostasis. We now know that cytokine-producing ILCs contribute to multiple immune pathways by, for example, sustaining appropriate immune responses to commensals and pathogens at mucosal barriers, potentiating adaptive immunity, and regulating tissue inflammation. Critically, the biology of ILCs also extends beyond classical immunology to metabolic homeostasis, tissue remodeling, and dialog with the nervous system. The last 10 years have also contributed to our greater understanding of the transcriptional networks that regulate lymphocyte commitment and delineation. This, in conjunction with the recent advances in our understanding of the influence of local tissue microenvironments on the plasticity and function of ILCs, has led to a re-evaluation of their existing categorization. In this review, we distill the advances in ILC biology over the past decade to refine the nomenclature of ILCs and highlight the importance of ILCs in tissue homeostasis, morphogenesis, metabolism, repair, and regeneration.


Subject(s)
Adaptive Immunity/physiology , Immunity, Innate , Lymphocytes/cytology , Animals , B-Lymphocytes/immunology , Cytokines/immunology , Homeostasis , Humans , Hypothalamo-Hypophyseal System , Inflammation/immunology , Killer Cells, Natural/cytology , Mice , Phenotype , Pituitary-Adrenal System , Regeneration , T-Lymphocytes/immunology
8.
Annu Rev Immunol ; 28: 623-67, 2010.
Article in English | MEDLINE | ID: mdl-20192812

ABSTRACT

The human intestine is colonized by an estimated 100 trillion bacteria. Some of these bacteria are essential for normal physiology, whereas others have been implicated in the pathogenesis of multiple inflammatory diseases including IBD and asthma. This review examines the influence of signals from intestinal bacteria on the homeostasis of the mammalian immune system in the context of health and disease. We review the bacterial composition of the mammalian intestine, known bacterial-derived immunoregulatory molecules, and the mammalian innate immune receptors that recognize them. We discuss the influence of bacterial-derived signals on immune cell function and the mechanisms by which these signals modulate the development and progression of inflammatory disease. We conclude with an examination of successes and future challenges in using bacterial communities or their products in the prevention or treatment of human disease.


Subject(s)
Homeostasis , Intestines/immunology , Intestines/microbiology , Animals , Humans , Immunity, Innate , Receptors, Immunologic/immunology , Signal Transduction
9.
Cell ; 161(1): 146-160, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25815992

ABSTRACT

Obesity is an increasingly prevalent disease worldwide. While genetic and environmental factors are known to regulate the development of obesity and associated metabolic diseases, emerging studies indicate that innate and adaptive immune cell responses in adipose tissue have critical roles in the regulation of metabolic homeostasis. In the lean state, type 2 cytokine-associated immune cell responses predominate in white adipose tissue and protect against weight gain and insulin resistance through direct effects on adipocytes and elicitation of beige adipose. In obesity, these metabolically beneficial immune pathways become dysregulated, and adipocytes and other factors initiate metabolically deleterious type 1 inflammation that impairs glucose metabolism. This review discusses our current understanding of the functions of different types of adipose tissue and how immune cells regulate adipocyte function and metabolic homeostasis in the context of health and disease and highlights. We also highlight the potential of targeting immuno-metabolic pathways as a therapeutic strategy to treat obesity and associated diseases.


Subject(s)
Adipose Tissue/metabolism , Obesity/immunology , Obesity/metabolism , Animals , Feedback, Physiological , Humans , Inflammation/metabolism , Insulin Resistance , Macrophages/immunology
10.
Nat Immunol ; 18(8): 851-860, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28722709

ABSTRACT

The study of the intestinal microbiota has begun to shift from cataloging individual members of the commensal community to understanding their contributions to the physiology of the host organism in health and disease. Here, we review the effects of the microbiome on innate and adaptive immunological players from epithelial cells and antigen-presenting cells to innate lymphoid cells and regulatory T cells. We discuss recent studies that have identified diverse microbiota-derived bioactive molecules and their effects on inflammation within the intestine and distally at sites as anatomically remote as the brain. Finally, we highlight new insights into how the microbiome influences the host response to infection, vaccination and cancer, as well as susceptibility to autoimmune and neurodegenerative disorders.


Subject(s)
Gastrointestinal Microbiome/immunology , Infections/immunology , Inflammation/immunology , Neoplasms/immunology , Adaptive Immunity/immunology , Antigen-Presenting Cells/immunology , Autoimmune Diseases/immunology , Humans , Immunity, Innate/immunology , Immunity, Mucosal/immunology , Lymphocytes/immunology , Neurodegenerative Diseases/immunology , Symbiosis , T-Lymphocytes, Regulatory/immunology , Vaccination
11.
Immunity ; 52(3): 464-474, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32187517

ABSTRACT

The ability of the nervous system to sense environmental stimuli and to relay these signals to immune cells via neurotransmitters and neuropeptides is indispensable for effective immunity and tissue homeostasis. Depending on the tissue microenvironment and distinct drivers of a certain immune response, the same neuronal populations and neuro-mediators can exert opposing effects, promoting or inhibiting tissue immunity. Here, we review the current understanding of the mechanisms that underlie the complex interactions between the immune and the nervous systems in different tissues and contexts. We outline current gaps in knowledge and argue for the importance of considering infectious and inflammatory disease within a conceptual framework that integrates neuro-immune circuits both local and systemic, so as to better understand effective immunity to develop improved approaches to treat inflammation and disease.


Subject(s)
Immune System/immunology , Nervous System/immunology , Neuroimmunomodulation/immunology , Neurons/immunology , Animals , Humans , Immune System/cytology , Immune System/metabolism , Immunity, Innate/immunology , Nervous System/cytology , Nervous System/metabolism , Neurogenic Inflammation/immunology , Neurogenic Inflammation/metabolism , Neurons/metabolism , Neuropeptides/immunology , Neuropeptides/metabolism , Signal Transduction/immunology
12.
Immunity ; 52(4): 606-619.e6, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32160524

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) regulate immunity, inflammation, and tissue homeostasis. Two distinct subsets of ILC2s have been described: steady-state natural ILC2s and inflammatory ILC2s, which are elicited following helminth infection. However, how tissue-specific cues regulate these two subsets of ILC2s and their effector functions remains elusive. Here, we report that interleukin-33 (IL-33) promotes the generation of inflammatory ILC2s (ILC2INFLAM) via induction of the enzyme tryptophan hydroxylase 1 (Tph1). Tph1 expression was upregulated in ILC2s upon activation with IL-33 or following helminth infection in an IL-33-dependent manner. Conditional deletion of Tph1 in lymphocytes resulted in selective impairment of ILC2INFLAM responses and increased susceptibility to helminth infection. Further, RNA sequencing analysis revealed altered gene expression in Tph1 deficient ILC2s including inducible T cell co-stimulator (Icos). Collectively, these data reveal a previously unrecognized function for IL-33, Tph1, and ICOS in promoting inflammatory ILC2 responses and type 2 immunity at mucosal barriers.


Subject(s)
Immunity, Cellular , Inducible T-Cell Co-Stimulator Protein/immunology , Interleukin-33/immunology , Nippostrongylus/immunology , Strongylida Infections/immunology , T-Lymphocyte Subsets/immunology , Tryptophan Hydroxylase/immunology , Animals , Cell Lineage/genetics , Cell Lineage/immunology , Disease Susceptibility , Gene Expression Regulation/immunology , Immunity, Innate , Immunity, Mucosal , Inducible T-Cell Co-Stimulator Protein/genetics , Interleukin-33/genetics , Larva/growth & development , Larva/immunology , Larva/pathogenicity , Lymph Nodes/immunology , Lymph Nodes/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nippostrongylus/growth & development , Nippostrongylus/pathogenicity , Primary Cell Culture , Signal Transduction , Strongylida Infections/genetics , Strongylida Infections/parasitology , Strongylida Infections/pathology , T-Lymphocyte Subsets/classification , T-Lymphocyte Subsets/parasitology , Tryptophan Hydroxylase/genetics
13.
Nat Immunol ; 17(7): 765-74, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27328006

ABSTRACT

Research over the last 7 years has led to the formal identification of innate lymphoid cells (ILCs), increased the understanding of their tissue distribution and has established essential functions of ILCs in diverse physiological processes. These include resistance to pathogens, the regulation of autoimmune inflammation, tissue remodeling, cancer and metabolic homeostasis. Notably, many ILC functions appear to be regulated by mechanisms distinct from those of other innate and adaptive immune cells. In this Review, we focus on how group 2 ILC (ILC2) and group 3 ILC (ILC3) responses are regulated and how these cells interact with other immune and non-immune cells to mediate their functions. We highlight experimental evidence from mouse models and patient-based studies that have elucidated the effects of ILCs on the maintenance of tissue homeostasis and the consequences for health and disease.


Subject(s)
Autoimmune Diseases/immunology , Immunity, Innate , Inflammation , Lymphocyte Subsets/immunology , Lymphocytes/immunology , Neoplasms/immunology , Adaptive Immunity , Animals , Cytokines/metabolism , Disease Models, Animal , Homeostasis , Humans , Mice , Wound Healing
14.
Nat Immunol ; 17(6): 656-65, 2016 06.
Article in English | MEDLINE | ID: mdl-27043409

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) regulate tissue inflammation and repair after activation by cell-extrinsic factors such as host-derived cytokines. However, the cell-intrinsic metabolic pathways that control ILC2 function are undefined. Here we demonstrate that expression of the enzyme arginase-1 (Arg1) during acute or chronic lung inflammation is a conserved trait of mouse and human ILC2s. Deletion of mouse ILC-intrinsic Arg1 abrogated type 2 lung inflammation by restraining ILC2 proliferation and dampening cytokine production. Mechanistically, inhibition of Arg1 enzymatic activity disrupted multiple components of ILC2 metabolic programming by altering arginine catabolism, impairing polyamine biosynthesis and reducing aerobic glycolysis. These data identify Arg1 as a key regulator of ILC2 bioenergetics that controls proliferative capacity and proinflammatory functions promoting type 2 inflammation.


Subject(s)
Arginase/metabolism , Lymphocytes/physiology , Pneumonia/immunology , Animals , Arginase/genetics , Cell Proliferation/genetics , Cells, Cultured , Cytokines/metabolism , Glycolysis/genetics , Humans , Immunity, Innate , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Polyamines/metabolism , Th2 Cells/immunology
15.
Immunity ; 50(2): 505-519.e4, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30770247

ABSTRACT

Innate lymphoid cells (ILC) play critical roles in regulating immunity, inflammation, and tissue homeostasis in mice. However, limited access to non-diseased human tissues has hindered efforts to profile anatomically-distinct ILCs in humans. Through flow cytometric and transcriptional analyses of lymphoid, mucosal, and metabolic tissues from previously healthy human organ donors, here we have provided a map of human ILC heterogeneity across multiple anatomical sites. In contrast to mice, human ILCs are less strictly compartmentalized and tissue localization selectively impacts ILC distribution in a subset-dependent manner. Tissue-specific distinctions are particularly apparent for ILC1 populations, whose distribution was markedly altered in obesity or aging. Furthermore, the degree of ILC1 population heterogeneity differed substantially in lymphoid versus mucosal sites. Together, these analyses comprise a comprehensive characterization of the spatial and temporal dynamics regulating the anatomical distribution, subset heterogeneity, and functional potential of ILCs in non-diseased human tissues.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Organ Specificity/immunology , Transcriptome/immunology , Adolescent , Adult , Aged , Aging/genetics , Animals , Child , Child, Preschool , Female , Genetic Heterogeneity , Humans , Immunity, Innate/genetics , Infant , Infant, Newborn , Lymphocytes/metabolism , Male , Mice , Middle Aged , Organ Specificity/genetics , Transcriptome/genetics , Young Adult
16.
Immunity ; 51(4): 682-695.e6, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31353223

ABSTRACT

Innate lymphocytes maintain tissue homeostasis at mucosal barriers, with group 2 innate lymphoid cells (ILC2s) producing type 2 cytokines and controlling helminth infection. While the molecular understanding of ILC2 responses has advanced, the complexity of microenvironmental factors impacting ILC2s is becoming increasingly apparent. Herein, we used single-cell analysis to explore the diversity of gene expression among lung lymphocytes during helminth infection. Following infection, we identified a subset of ILC2s that preferentially expressed Il5-encoding interleukin (IL)-5, together with Calca-encoding calcitonin gene-related peptide (CGRP) and its cognate receptor components. CGRP in concert with IL-33 and neuromedin U (NMU) supported IL-5 but constrained IL-13 expression and ILC2 proliferation. Without CGRP signaling, ILC2 responses and worm expulsion were enhanced. Collectively, these data point to CGRP as a context-dependent negative regulatory factor that shapes innate lymphocyte responses to alarmins and neuropeptides during type 2 innate immune responses.


Subject(s)
Inflammation/immunology , Lymphocytes/immunology , Nippostrongylus/physiology , Receptors, Calcitonin Gene-Related Peptide/metabolism , Strongylida Infections/immunology , Animals , Cells, Cultured , Cytokines/metabolism , Immunity, Innate , Interleukin-33/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropeptides/metabolism , Receptors, Calcitonin Gene-Related Peptide/genetics , Single-Cell Analysis , Th2 Cells/immunology , Transplantation Chimera
17.
Nature ; 611(7936): 578-584, 2022 11.
Article in English | MEDLINE | ID: mdl-36323778

ABSTRACT

Dietary fibres can exert beneficial anti-inflammatory effects through microbially fermented short-chain fatty acid metabolites<sup>1,2</sup>, although the immunoregulatory roles of most fibre diets and their microbiota-derived metabolites remain poorly defined. Here, using microbial sequencing and untargeted metabolomics, we show that a diet of inulin fibre alters the composition of the mouse microbiota and the levels of microbiota-derived metabolites, notably bile acids. This metabolomic shift is associated with type 2 inflammation in the intestine and lungs, characterized by IL-33 production, activation of group 2 innate lymphoid cells and eosinophilia. Delivery of cholic acid mimics inulin-induced type 2 inflammation, whereas deletion of the bile acid receptor farnesoid X receptor diminishes the effects of inulin. The effects of inulin are microbiota dependent and were reproduced in mice colonized with human-derived microbiota. Furthermore, genetic deletion of a bile-acid-metabolizing enzyme in one bacterial species abolishes the ability of inulin to trigger type 2 inflammation. Finally, we demonstrate that inulin enhances allergen- and helminth-induced type 2 inflammation. Taken together, these data reveal that dietary inulin fibre triggers microbiota-derived cholic acid and type 2 inflammation at barrier surfaces with implications for understanding the pathophysiology of allergic inflammation, tissue protection and host defence.


Subject(s)
Bile Acids and Salts , Dietary Fiber , Gastrointestinal Microbiome , Inflammation , Inulin , Animals , Humans , Mice , Bile Acids and Salts/metabolism , Cholic Acid/pharmacology , Dietary Fiber/pharmacology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Immunity, Innate , Inflammation/chemically induced , Inflammation/classification , Inflammation/pathology , Inulin/pharmacology , Lymphocytes/cytology , Lymphocytes/drug effects , Lymphocytes/immunology , Metabolomics , Lung/drug effects , Lung/pathology , Intestines/drug effects , Intestines/microbiology , Intestines/pathology , Interleukin-33/metabolism , Eosinophils/cytology , Eosinophils/drug effects , Eosinophils/immunology
18.
Nature ; 611(7937): 787-793, 2022 11.
Article in English | MEDLINE | ID: mdl-36323781

ABSTRACT

Emerging studies indicate that cooperation between neurons and immune cells regulates antimicrobial immunity, inflammation and tissue homeostasis. For example, a neuronal rheostat provides excitatory or inhibitory signals that control the functions of tissue-resident group 2 innate lymphoid cells (ILC2s) at mucosal barrier surfaces1-4. ILC2s express NMUR1, a receptor for neuromedin U (NMU), which is a prominent cholinergic neuropeptide that promotes ILC2 responses5-7. However, many functions of ILC2s are shared with adaptive lymphocytes, including the production of type 2 cytokines8,9 and the release of tissue-protective amphiregulin (AREG)10-12. Consequently, there is controversy regarding whether innate lymphoid cells and adaptive lymphocytes perform redundant or non-redundant functions13-15. Here we generate a new genetic tool to target ILC2s for depletion or gene deletion in the presence of an intact adaptive immune system. Transgenic expression of iCre recombinase under the control of the mouse Nmur1 promoter enabled ILC2-specific deletion of AREG. This revealed that ILC2-derived AREG promotes non-redundant functions in the context of antiparasite immunity and tissue protection following intestinal damage and inflammation. Notably, NMU expression levels increased in inflamed intestinal tissues from both mice and humans, and NMU induced AREG production in mouse and human ILC2s. These results indicate that neuropeptide-mediated regulation of non-redundant functions of ILC2s is an evolutionarily conserved mechanism that integrates immunity and tissue protection.


Subject(s)
Immunity, Innate , Intestinal Mucosa , Lymphocytes , Neuropeptides , Animals , Humans , Mice , Cytokines/immunology , Cytokines/metabolism , Immunity, Innate/immunology , Inflammation/immunology , Inflammation/parasitology , Inflammation/pathology , Lymphocytes/immunology , Neuropeptides/metabolism , Neuropeptides/physiology , Amphiregulin , Intestinal Mucosa/immunology , Intestinal Mucosa/parasitology , Intestinal Mucosa/pathology
19.
Nature ; 611(7937): 794-800, 2022 11.
Article in English | MEDLINE | ID: mdl-36323785

ABSTRACT

Protective immunity relies on the interplay of innate and adaptive immune cells with complementary and redundant functions. Innate lymphoid cells (ILCs) have recently emerged as tissue-resident, innate mirror images of the T cell system, with which they share lineage-specifying transcription factors and effector machinery1. Located at barrier surfaces, ILCs are among the first responders against invading pathogens and thus could potentially determine the outcome of the immune response2. However, so far it has not been possible to dissect the unique contributions of ILCs to protective immunity owing to limitations in specific targeting of ILC subsets. Thus, all of the available data have been generated either in mice lacking the adaptive immune system or with tools that also affect other immune cell subsets. In addition, it has been proposed that ILCs might be dispensable for a proper immune response because other immune cells could compensate for their absence3-7. Here we report the generation of a mouse model based on the neuromedin U receptor 1 (Nmur1) promoter as a driver for simultaneous expression of Cre recombinase and green fluorescent protein, which enables gene targeting in group 2 ILCs (ILC2s) without affecting other innate and adaptive immune cells. Using Cre-mediated gene deletion of Id2 and Gata3 in Nmur1-expressing cells, we generated mice with a selective and specific deficiency in ILC2s. ILC2-deficient mice have decreased eosinophil counts at steady state and are unable to recruit eosinophils to the airways in models of allergic asthma. Further, ILC2-deficient mice do not mount an appropriate immune and epithelial type 2 response, resulting in a profound defect in worm expulsion and a non-protective type 3 immune response. In total, our data establish non-redundant functions for ILC2s in the presence of adaptive immune cells at steady state and during disease and argue for a multilayered organization of the immune system on the basis of a spatiotemporal division of labour.


Subject(s)
Immune System , Immunity, Innate , Lymphocytes , Animals , Mice , Asthma/genetics , Asthma/immunology , Asthma/pathology , Disease Models, Animal , Eosinophils/pathology , Immunity, Innate/immunology , Lymphocytes/classification , Lymphocytes/immunology , Green Fluorescent Proteins , Immune System/cytology , Immune System/immunology , Immune System/pathology
20.
Immunity ; 49(4): 709-724.e8, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30291028

ABSTRACT

B cells thwart antigenic aggressions by releasing immunoglobulin M (IgM), IgG, IgA, and IgE, which deploy well-understood effector functions. In contrast, the role of secreted IgD remains mysterious. We found that some B cells generated IgD-secreting plasma cells following early exposure to external soluble antigens such as food proteins. Secreted IgD targeted basophils by interacting with the CD44-binding protein galectin-9. When engaged by antigen, basophil-bound IgD increased basophil secretion of interleukin-4 (IL-4), IL-5, and IL-13, which facilitated the generation of T follicular helper type 2 cells expressing IL-4. These germinal center T cells enhanced IgG1 and IgE but not IgG2a and IgG2b responses to the antigen initially recognized by basophil-bound IgD. In addition, IgD ligation by antigen attenuated allergic basophil degranulation induced by IgE co-ligation. Thus, IgD may link B cells with basophils to optimize humoral T helper type 2-mediated immunity against common environmental soluble antigens.


Subject(s)
Basophils/immunology , Galectins/immunology , Hyaluronan Receptors/immunology , Immunoglobulin D/immunology , Th2 Cells/immunology , Animals , Basophils/metabolism , Cell Line, Tumor , Cells, Cultured , Galectins/genetics , Galectins/metabolism , Gene Expression Profiling/methods , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Immunoglobulin D/metabolism , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-4/metabolism , Mice, Inbred BALB C , Protein Binding , Th2 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL