Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cancer Immunol Immunother ; 70(4): 1101-1113, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33123754

ABSTRACT

Although immunotherapy has achieved impressive durable clinical responses, many cancers respond only temporarily or not at all to immunotherapy. To find novel, targetable mechanisms of resistance to immunotherapy, patient-derived melanoma cell lines were transduced with 576 open reading frames, or exposed to arrayed libraries of 850 bioactive compounds, prior to co-culture with autologous tumor-infiltrating lymphocytes (TILs). The synergy between the targets and TILs to induce apoptosis, and the mechanisms of inhibiting resistance to TILs were interrogated. Gene expression analyses were performed on tumor samples from patients undergoing immunotherapy for metastatic melanoma. Finally, the effect of inhibiting the top targets on the efficacy of immunotherapy was investigated in multiple preclinical models. Aurora kinase was identified as a mediator of melanoma cell resistance to T-cell-mediated cytotoxicity in both complementary screens. Aurora kinase inhibitors were validated to synergize with T-cell-mediated cytotoxicity in vitro. The Aurora kinase inhibition-mediated sensitivity to T-cell cytotoxicity was shown to be partially driven by p21-mediated induction of cellular senescence. The expression levels of Aurora kinase and related proteins were inversely correlated with immune infiltration, response to immunotherapy and survival in melanoma patients. Aurora kinase inhibition showed variable responses in combination with immunotherapy in vivo, suggesting its activity is modified by other factors in the tumor microenvironment. These data suggest that Aurora kinase inhibition enhances T-cell cytotoxicity in vitro and can potentiate antitumor immunity in vivo in some but not all settings. Further studies are required to determine the mechanism of primary resistance to this therapeutic intervention.


Subject(s)
Aurora Kinase A/metabolism , Aurora Kinase B/metabolism , Drug Resistance, Neoplasm/immunology , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , T-Lymphocytes, Cytotoxic/transplantation , Animals , Apoptosis , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/genetics , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/genetics , Cell Proliferation , Female , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/therapy , Mice , Prognosis , Survival Rate , T-Lymphocytes, Cytotoxic/immunology , Tumor Cells, Cultured , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
2.
bioRxiv ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39345539

ABSTRACT

The cohesin complex is a critical regulator of gene expression. STAG2 is the most frequently mutated cohesin subunit across several cancer types and is a key tumor suppressor in lung cancer. Here, we coupled somatic CRISPR-Cas9 genome editing and tumor barcoding with an autochthonous oncogenic KRAS-driven lung cancer model and show that STAG2 is uniquely tumor suppressive among all core and auxiliary cohesin components. The heterodimeric complex components PAXIP1 and PAGR1 have highly correlated effects with STAG2 in human lung cancer cell lines, are tumor suppressors in vivo , and are epistatic to STAG2 in oncogenic KRAS-driven lung tumorigenesis in vivo . STAG2 inactivation elicits changes in gene expression, chromatin accessibility and 3D genome conformation that impact cancer cell state. Gene expression and chromatin accessibility similarities between STAG2- and PAXIP1-deficient neoplastic cells further relates STAG2-cohesin to PAXIP1/PAGR1. These findings reveal a STAG2-PAXIP1/PAGR1 tumor-suppressive axis and uncover novel PAXIP1-dependent and PAXIP1-independent STAG2-cohesin mediated mechanisms of lung tumor suppression. SUMMARY: STAG2 is a frequently mutated cohesin subunit across several cancers and one of the most important functional suppressors of lung adenocarcinoma. Our findings underscore important roles of STAG2 in suppressing lung tumorigenesis and highlight a STAG2-PAXIP1/PAGR1 tumor-suppressive program that may transcend cancer type.

3.
bioRxiv ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39229041

ABSTRACT

Epigenetic dysregulation is widespread in cancer. However, the specific epigenetic regulators and the processes they control to drive cancer phenotypes are poorly understood. Here, we employed a novel, scalable and high-throughput in vivo method to perform iterative functional screens of over 250 epigenetic regulatory genes within autochthonous oncogenic KRAS-driven lung tumors. We identified multiple novel epigenetic tumor suppressor and tumor dependency genes. We show that a specific HBO1 complex and the MLL1 complex are among the most impactful tumor suppressive epigenetic regulators in lung. The histone modifications generated by the HBO1 complex are frequently absent or reduced in human lung adenocarcinomas. The HBO1 and MLL1 complexes regulate chromatin accessibility of shared genomic regions, lineage fidelity and the expression of canonical tumor suppressor genes. The HBO1 and MLL1 complexes are epistatic during lung tumorigenesis, and their functional correlation is conserved in human cancer cell lines. Together, these results demonstrate the value of quantitative methods to generate a phenotypic roadmap of epigenetic regulatory genes in tumorigenesis in vivo .

4.
J Exp Med ; 220(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-36995340

ABSTRACT

Phagocytosis is a key macrophage function, but how phagocytosis shapes tumor-associated macrophage (TAM) phenotypes and heterogeneity in solid tumors remains unclear. Here, we utilized both syngeneic and novel autochthonous lung tumor models in which neoplastic cells express the fluorophore tdTomato (tdTom) to identify TAMs that have phagocytosed neoplastic cells in vivo. Phagocytic tdTompos TAMs upregulated antigen presentation and anti-inflammatory proteins, but downregulated classic proinflammatory effectors compared to tdTomneg TAMs. Single-cell transcriptomic profiling identified TAM subset-specific and common gene expression changes associated with phagocytosis. We uncover a phagocytic signature that is predominated by oxidative phosphorylation (OXPHOS), ribosomal, and metabolic genes, and this signature correlates with worse clinical outcome in human lung cancer. Expression of OXPHOS proteins, mitochondrial content, and functional utilization of OXPHOS were increased in tdTompos TAMs. tdTompos tumor dendritic cells also display similar metabolic changes. Our identification of phagocytic TAMs as a distinct myeloid cell state links phagocytosis of neoplastic cells in vivo with OXPHOS and tumor-promoting phenotypes.


Subject(s)
Lung Neoplasms , Macrophages , Humans , Macrophages/metabolism , Phagocytosis/genetics , Lung Neoplasms/pathology , Myeloid Cells/metabolism , Oxidative Stress , Tumor Microenvironment
5.
Cancer Res ; 82(8): 1589-1602, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35425962

ABSTRACT

Lung cancer is the leading cause of cancer death worldwide, with lung adenocarcinoma being the most common subtype. Many oncogenes and tumor suppressor genes are altered in this cancer type, and the discovery of oncogene mutations has led to the development of targeted therapies that have improved clinical outcomes. However, a large fraction of lung adenocarcinomas lacks mutations in known oncogenes, and the genesis and treatment of these oncogene-negative tumors remain enigmatic. Here, we perform iterative in vivo functional screens using quantitative autochthonous mouse model systems to uncover the genetic and biochemical changes that enable efficient lung tumor initiation in the absence of oncogene alterations. Generation of hundreds of diverse combinations of tumor suppressor alterations demonstrates that inactivation of suppressors of the RAS and PI3K pathways drives the development of oncogene-negative lung adenocarcinoma. Human genomic data and histology identified RAS/MAPK and PI3K pathway activation as a common feature of an event in oncogene-negative human lung adenocarcinomas. These Onc-negativeRAS/PI3K tumors and related cell lines are vulnerable to pharmacologic inhibition of these signaling axes. These results transform our understanding of this prevalent yet understudied subtype of lung adenocarcinoma. SIGNIFICANCE: To address the large fraction of lung adenocarcinomas lacking mutations in proto-oncogenes for which targeted therapies are unavailable, this work uncovers driver pathways of oncogene-negative lung adenocarcinomas and demonstrates their therapeutic vulnerabilities.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Animals , Genes, Tumor Suppressor , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mutation , Oncogenes , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins p21(ras)/genetics
6.
Cancer Discov ; 11(7): 1754-1773, 2021 07.
Article in English | MEDLINE | ID: mdl-33608386

ABSTRACT

Cancer genotyping has identified a large number of putative tumor suppressor genes. Carcinogenesis is a multistep process, but the importance and specific roles of many of these genes during tumor initiation, growth, and progression remain unknown. Here we use a multiplexed mouse model of oncogenic KRAS-driven lung cancer to quantify the impact of 48 known and putative tumor suppressor genes on diverse aspects of carcinogenesis at an unprecedented scale and resolution. We uncover many previously understudied functional tumor suppressors that constrain cancer in vivo. Inactivation of some genes substantially increased growth, whereas the inactivation of others increases tumor initiation and/or the emergence of exceptionally large tumors. These functional in vivo analyses revealed an unexpectedly complex landscape of tumor suppression that has implications for understanding cancer evolution, interpreting clinical cancer genome sequencing data, and directing approaches to limit tumor initiation and progression. SIGNIFICANCE: Our high-throughput and high-resolution analysis of tumor suppression uncovered novel genetic determinants of oncogenic KRAS-driven lung cancer initiation, overall growth, and exceptional growth. This taxonomy is consistent with changing constraints during the life history of cancer and highlights the value of quantitative in vivo genetic analyses in autochthonous cancer models.This article is highlighted in the In This Issue feature, p. 1601.


Subject(s)
Genes, Tumor Suppressor , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Cell Transformation, Neoplastic , Humans , Lung Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL