Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Prenat Diagn ; 44(6-7): 815-820, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38363003

ABSTRACT

OBJECTIVE: To assess the diagnostic yield of genetic testing for antenatally detected conotruncal defects. METHOD: This was a retrospective analysis of all antenatally detected cases of conotruncal anomalies over a 4-year period. Patients were offered antenatal and postnatal genetic testing including QF-PCR, microarray and exome sequencing (ES) antenatally or genome sequencing (GS) postnatally on a case-by-case basis. RESULTS: There were 301 cases included. Overall, there were pathogenic genetic findings in 27.6% of the cases tested (53/192). The commonest finding was 22q11.21 deletion (20/192 cases, 10.4%), followed by trisomy 21 (6/192, 3.1%). There were 249 cases of isolated conotruncal anomalies, of which 59.8% (149/249) had genetic testing and 22.8% (34/149) had pathogenic findings. ES/GS was performed in five cases with no pathogenic findings. There were 52 cases of non-isolated contruncal anomalies, of which 82.7% (43/52) had genetic testing. ES/GS was performed in 11 cases in this group and increased the yield of clinically significant diagnoses from 32.6% (14/43) to 44.2% (19/43). CONCLUSION: Genetic abnormalities are present in over one quarter of cases of antenatally detected conotruncal anomalies. The commonest abnormality is 22q11.21 deletion. Exome sequencing or genome sequencing leads to a significant increase in genetic diagnosis in non-isolated cases.


Subject(s)
Genetic Testing , Humans , Female , Retrospective Studies , Pregnancy , Genetic Testing/methods , Heart Defects, Congenital/genetics , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/diagnosis , Prenatal Diagnosis/methods , Exome Sequencing , Adult , Male
2.
Article in English | MEDLINE | ID: mdl-38789245

ABSTRACT

Recent technological advances have led to the expansion of testing options for newborns with suspected rare genetic conditions, particularly in high-income healthcare settings. This article summarises the key genomic testing approaches, their indications and potential limitations.

3.
Prenat Diagn ; 43(13): 1674-1677, 2023 12.
Article in English | MEDLINE | ID: mdl-38059661

ABSTRACT

Trio exome sequencing was performed on a fetus with bilateral mesomelia of the lower limbs with significant angulation of the tibial bones, micrognathia and hypertelorism detected on ultrasound scan at 19 + 0 weeks gestation. The couple is consanguineous. A homozygous pathogenic frameshift variant in the SMOC1 gene (c.339_340del p.(Phe114Cysfs*40)) was detected and both parents were shown to be heterozygous. Pathogenic variants in the SMOC1 gene are associated with microphthalmia with limb anomalies which multidisciplinary team discussion determined to be causal of the scan anomalies detected. The fetus was also a compound heterozygote for CYP21A2 pathogenic variants, confirming a second diagnosis of non-classical congenital adrenal hyperplasia, which was felt incidental to the scan findings. The risk that this couple's next pregnancy would be affected by either of these disorders is 1 in 4 (25%) and demonstrates the importance of genetic diagnoses for the family and implications for future pregnancies.


Subject(s)
Adrenal Hyperplasia, Congenital , Fetal Diseases , Hypertelorism , Micrognathism , Pregnancy , Female , Humans , Adrenal Hyperplasia, Congenital/genetics , Micrognathism/diagnostic imaging , Micrognathism/genetics , Incidental Findings , Fetal Diseases/genetics , Fetus , Lower Extremity , Mutation , Osteonectin/genetics , Steroid 21-Hydroxylase/genetics
4.
Prenat Diagn ; 43(12): 1567-1569, 2023 11.
Article in English | MEDLINE | ID: mdl-37964423

ABSTRACT

Duo exome testing was performed on a fetus conceived via in vitro fertilization with an egg donor. The fetus presented with non-immune hydrops fetalis (NIHF) at 20 + 0 weeks gestation. Two variants were detected in the GUSB gene. Biallelic pathogenic variants cause mucopolysaccharidosis type VII (MPS-VII), which can present with NIHF prenatally. At the time of analysis and initial report, one variant was classified as likely pathogenic and the other as of uncertain clinical significance. Biochemical testing of the amniotic fluid supernatant showed elevated glycosaminoglycans and low ß-glucuronidase activity consistent with the diagnosis of MPS-VII. This evidence allowed the upgrade of the pathogenicity for both variants, confirming the diagnosis of MPS-VII. The infant was born at 36 + 5 weeks and enzyme replacement therapy (ERT) using vestronidase was initiated at 20 days with planning for hematopoietic stem cell transplant ongoing. The ERT therapy has been well tolerated, with decreasing quantitative urine glycosaminoglycans. Long-term follow up is required to determine whether treatment has been successful. This case demonstrates the utility of alternative testing methods to clarify the pathogenicity of variants and the clinical utility of obtaining a diagnosis antenatally in facilitating treatment in the neonatal period, and specifically highlights MPS-VII as a treatable cause of NIHF.


Subject(s)
Mucopolysaccharidosis VII , Infant, Newborn , Pregnancy , Female , Humans , Mucopolysaccharidosis VII/diagnosis , Mucopolysaccharidosis VII/genetics , Mucopolysaccharidosis VII/therapy , Glucuronidase/genetics , Glucuronidase/therapeutic use , Hydrops Fetalis/diagnosis , Hydrops Fetalis/genetics , Hydrops Fetalis/therapy , Prenatal Diagnosis , Amniotic Fluid , Glycosaminoglycans
5.
Genet Med ; 24(10): 2051-2064, 2022 10.
Article in English | MEDLINE | ID: mdl-35833929

ABSTRACT

PURPOSE: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. METHODS: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. RESULTS: We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. CONCLUSION: Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Intellectual Disability , Repressor Proteins , Tooth Abnormalities , Abnormalities, Multiple/genetics , Bone Diseases, Developmental/etiology , Bone Diseases, Developmental/genetics , Chromosome Deletion , Facies , Humans , Intellectual Disability/genetics , Mutation, Missense , Phenotype , Proteasome Endopeptidase Complex/genetics , Repressor Proteins/genetics , Tooth Abnormalities/diagnosis , Transcription Factors/genetics
6.
Am J Med Genet A ; 182(10): 2403-2408, 2020 10.
Article in English | MEDLINE | ID: mdl-32783357

ABSTRACT

Short-rib polydactyly syndromes are a heterogeneous group of disorders characterized by narrow thorax with short ribs, polydactyly and often other visceral and skeletal malformations. To date there have only been six reported patients with homozygous and compound heterozygous variants in IFT81, causing a short-rib thoracic dysplasia, with, or without, polydactyly (SRTD19: OMIM 617895). IFT81 is a protein integral to the core of the intraflagellar transport complex B (IFT-B), which is involved in anterograde transport in the cilium. We describe the case of a male infant with compound heterozygous variants in IFT81, who presented with short long bones, a narrow thorax, polydactyly, and multiple malformations. Three novel clinical features are reported including complete situs inversus, micropenis, and rectal atresia, which have not previously been associated with variants in IFT81. We reviewed the literature and identified the most consistent clinical features associated with this rare ciliopathy syndrome. We postulate that dolichocephaly and sagittal craniosynostosis may be associated with this condition, and provide a clue to considering IFT81 as the causative gene when deciphering complex ciliopathies.


Subject(s)
Ciliopathies/genetics , Craniosynostoses/genetics , Muscle Proteins/genetics , Short Rib-Polydactyly Syndrome/genetics , Cilia/pathology , Ciliopathies/diagnosis , Ciliopathies/physiopathology , Craniosynostoses/diagnosis , Craniosynostoses/physiopathology , Homozygote , Humans , Infant, Newborn , Male , Mutation/genetics , Phenotype , Short Rib-Polydactyly Syndrome/diagnosis , Short Rib-Polydactyly Syndrome/physiopathology
7.
Am J Med Genet C Semin Med Genet ; 181(4): 502-508, 2019 12.
Article in English | MEDLINE | ID: mdl-31479583

ABSTRACT

Sotos syndrome is an overgrowth-intellectual disability (OGID) syndrome caused by NSD1 pathogenic variants and characterized by a distinctive facial appearance, an intellectual disability, tall stature and/or macrocephaly. Other associated clinical features include scoliosis, seizures, renal anomalies, and cardiac anomalies. However, many of the published Sotos syndrome clinical descriptions are based on studies of children; the phenotype in adults with Sotos syndrome is not yet well described. Given that it is now 17 years since disruption of NSD1 was shown to cause Sotos syndrome, many of the children first reported are now adults. It is therefore timely to investigate the phenotype of 44 adults with Sotos syndrome and NSD1 pathogenic variants. We have shown that adults with Sotos syndrome display a wide spectrum of intellectual ability with functioning ranging from fully independent to fully dependent. Reproductive rates are low. In our cohort, median height in adult women is +1.9 SD and men +0.5 SD. There is a distinctive facial appearance in adults with a tall, square, prominent chin. Reassuringly, adults with Sotos syndrome are generally healthy with few new medical issues; however, lymphedema, poor dentition, hearing loss, contractures and tremor have developed in a small number of individuals.


Subject(s)
Phenotype , Sotos Syndrome/physiopathology , Adult , Child , Facies , Female , Humans , Intellectual Disability/genetics , Male , Sotos Syndrome/genetics , Sotos Syndrome/psychology
8.
Clin Genet ; 95(6): 693-703, 2019 06.
Article in English | MEDLINE | ID: mdl-30859559

ABSTRACT

Noonan syndrome (NS) is characterised by distinctive facial features, heart defects, variable degrees of intellectual disability and other phenotypic manifestations. Although the mode of inheritance is typically dominant, recent studies indicate LZTR1 may be associated with both dominant and recessive forms. Seeking to describe the phenotypic characteristics of LZTR1-associated NS, we searched for likely pathogenic variants using two approaches. First, scrutiny of exomes from 9624 patients recruited by the Deciphering Developmental Disorders (DDDs) study uncovered six dominantly-acting mutations (p.R97L; p.Y136C; p.Y136H, p.N145I, p.S244C; p.G248R) of which five arose de novo, and three patients with compound-heterozygous variants (p.R210*/p.V579M; p.R210*/p.D531N; c.1149+1G>T/p.R688C). One patient also had biallelic loss-of-function mutations in NEB, consistent with a composite phenotype. After removing this complex case, analysis of human phenotype ontology terms indicated significant phenotypic similarities (P = 0.0005), supporting a causal role for LZTR1. Second, targeted sequencing of eight unsolved NS-like cases identified biallelic LZTR1 variants in three further subjects (p.W469*/p.Y749C, p.W437*/c.-38T>A and p.A461D/p.I462T). Our study strengthens the association of LZTR1 with NS, with de novo mutations clustering around the KT1-4 domains. Although LZTR1 variants explain ~0.1% of cases across the DDD cohort, the gene is a relatively common cause of unsolved NS cases where recessive inheritance is suspected.


Subject(s)
Exome , Noonan Syndrome/genetics , Transcription Factors/genetics , Adolescent , Alleles , Child , Child, Preschool , Cohort Studies , Female , Gene Ontology , Genes, Dominant , Genes, Recessive , Heterozygote , Humans , Infant , Male , Mutation , Noonan Syndrome/physiopathology , Pedigree , Phenotype
11.
Am J Med Genet A ; 170(11): 2835-2846, 2016 11.
Article in English | MEDLINE | ID: mdl-27667800

ABSTRACT

KBG syndrome is characterized by short stature, distinctive facial features, and developmental/cognitive delay and is caused by mutations in ANKRD11, one of the ankyrin repeat-containing cofactors. We describe 32 KBG patients aged 2-47 years from 27 families ascertained via two pathways: targeted ANKRD11 sequencing (TS) in a group who had a clinical diagnosis of KBG and whole exome sequencing (ES) in a second group in whom the diagnosis was unknown. Speech delay and learning difficulties were almost universal and variable behavioral problems frequent. Macrodontia of permanent upper central incisors was seen in 85%. Other clinical features included short stature, conductive hearing loss, recurrent middle ear infection, palatal abnormalities, and feeding difficulties. We recognized a new feature of a wide anterior fontanelle with delayed closure in 22%. The subtle facial features of KBG syndrome were recognizable in half the patients. We identified 20 ANKRD11 mutations (18 novel: all truncating) confirmed by Sanger sequencing in 32 patients. Comparison of the two ascertainment groups demonstrated that facial/other typical features were more subtle in the ES group. There were no conclusive phenotype-genotype correlations. Our findings suggest that mutation of ANKRD11 is a common Mendelian cause of developmental delay. Affected patients may not show the characteristic KBG phenotype and the diagnosis is therefore easily missed. We propose updated diagnostic criteria/clinical recommendations for KBG syndrome and suggest that inclusion of ANKRD11 will increase the utility of gene panels designed to investigate developmental delay. © 2016 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Bone Diseases, Developmental/diagnosis , Bone Diseases, Developmental/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Tooth Abnormalities/diagnosis , Tooth Abnormalities/genetics , Chromosome Deletion , Chromosomes, Human, Pair 16 , Comparative Genomic Hybridization , Facies , Female , Humans , Male , Phenotype , Repressor Proteins/genetics
12.
Am J Med Genet A ; 167A(12): 3153-60, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26333682

ABSTRACT

Submicroscopic deletions within chromosome 1q24q25 are associated with a syndromic phenotype of short stature, brachydactyly, learning difficulties, and facial dysmorphism. The critical region for the deletion phenotype has previously been narrowed to a 1.9 Mb segment containing 13 genes. We describe two further patients with 1q24 microdeletions and the skeletal phenotype, the first of whom has normal intellect, whereas the second has only mild learning impairment. The deletion in the first patient is very small and further narrows the critical interval for the striking skeletal aspects of this condition to a region containing only Dynamin 3 (DNM3) and two microRNAs that are harbored within intron 14 of this gene: miR199 and miR214. Mouse studies raise the possibility that these microRNAs may be implicated in the short stature and skeletal abnormalities of this microdeletion condition. The deletion in the second patient spans the previously reported critical region and indicates that the cognitive impairment may not always be as severe as previous reports suggest.


Subject(s)
Abnormalities, Multiple/genetics , Bone Diseases, Developmental/genetics , Chromosome Deletion , Chromosomes, Human, Pair 1/genetics , Dynamin III/genetics , MicroRNAs/genetics , Abnormalities, Multiple/pathology , Adolescent , Adult , Animals , Bone Diseases, Developmental/pathology , Brachydactyly/genetics , Brachydactyly/pathology , Comparative Genomic Hybridization , Female , Humans , Infant, Newborn , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Mice , Phenotype , Prognosis , Syndrome , Twins, Monozygotic/genetics
13.
medRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38405817

ABSTRACT

FLVCR1 encodes Feline leukemia virus subgroup C receptor 1 (FLVCR1), a solute carrier (SLC) transporter within the Major Facilitator Superfamily. FLVCR1 is a widely expressed transmembrane protein with plasma membrane and mitochondrial isoforms implicated in heme, choline, and ethanolamine transport. While Flvcr1 knockout mice die in utero with skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia, rare biallelic pathogenic FLVCR1 variants are linked to childhood or adult-onset neurodegeneration of the retina, spinal cord, and peripheral nervous system. We ascertained from research and clinical exome sequencing 27 individuals from 20 unrelated families with biallelic ultra-rare missense and predicted loss-of-function (pLoF) FLVCR1 variant alleles. We characterize an expansive FLVCR1 phenotypic spectrum ranging from adult-onset retinitis pigmentosa to severe developmental disorders with microcephaly, reduced brain volume, epilepsy, spasticity, and premature death. The most severely affected individuals, including three individuals with homozygous pLoF variants, share traits with Flvcr1 knockout mice and Diamond-Blackfan anemia including macrocytic anemia and congenital skeletal malformations. Pathogenic FLVCR1 missense variants primarily lie within transmembrane domains and reduce choline and ethanolamine transport activity compared with wild-type FLVCR1 with minimal impact on FLVCR1 stability or subcellular localization. Several variants disrupt splicing in a mini-gene assay which may contribute to genotype-phenotype correlations. Taken together, these data support an allele-specific gene dosage model in which phenotypic severity reflects residual FLVCR1 activity. This study expands our understanding of Mendelian disorders of choline and ethanolamine transport and demonstrates the importance of choline and ethanolamine in neurodevelopment and neuronal homeostasis.

14.
Pediatr Cardiol ; 34(3): 771-3, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23052680

ABSTRACT

The case report describes a 9-year-old boy who presented with an acute cerebrovascular accident and was found to have cardiac tamponade caused by cardiac rhabdomyosarcoma. Symptoms of rhabdomyosarcoma can be indolent and nonspecific, even with metastatic disease. Echocardiography and cardiac magnetic resonance imaging are explored as adjuncts to diagnosis. The radiologic features that helped with the diagnosis of this rare condition are described.


Subject(s)
Cardiac Tamponade/diagnosis , Heart Neoplasms/diagnosis , Rhabdomyosarcoma/diagnosis , Stroke/diagnosis , Cardiac Tamponade/complications , Cardiac Tamponade/surgery , Child , Combined Modality Therapy , Echocardiography, Doppler/methods , Follow-Up Studies , Gadolinium , Heart Neoplasms/complications , Heart Neoplasms/surgery , Humans , Magnetic Resonance Imaging/methods , Male , Rare Diseases , Rhabdomyosarcoma/complications , Rhabdomyosarcoma/surgery , Risk Assessment , Stroke/complications , Stroke/therapy
15.
Mol Genet Genomic Med ; 4(3): 359-66, 2016 May.
Article in English | MEDLINE | ID: mdl-27247962

ABSTRACT

BACKGROUND: Poikiloderma is defined as a chronic skin condition presenting with a combination of punctate atrophy, areas of depigmentation, hyperpigmentation and telangiectasia. In a variety of hereditary syndromes such as Rothmund-Thomson syndrome (RTS), Clericuzio-type poikiloderma with neutropenia (PN) and Dyskeratosis Congenita (DC), poikiloderma occurs as one of the main symptoms. Here, we report on genotype and phenotype data of a cohort of 44 index patients with RTS or related genodermatoses. METHODS: DNA samples from 43 patients were screened for variants in the 21 exons of the RECQL4 gene using PCR, SSCP-PAGE analysis and/or Sanger sequencing. Patients with only one or no detectable mutation in the RECQL4 gene were additionally tested for variants in the 8 exons of the USB1 (C16orf57) gene by Sanger sequencing. The effect of novel variants was evaluated by phylogenic studies, single-nucleotide polymorphism (SNP) databases and in silico analyses. RESULTS: We identified 23 different RECQL4 mutations including 10 novel and one homozygous novel USB1 (C16orf57) mutation in a patient with PN. Moreover, we describe 31 RECQL4 and 8 USB1 sequence variants, four of them being novel intronic RECQL4 sequence changes that may have some deleterious effects on splicing mechanisms and need further evaluation by transcript analyses. CONCLUSION: The current study contributes to the improvement of genetic diagnostic strategies and interpretation in RTS and PN that is relevant in order to assess the patients' cancer risk, to avoid continuous and inconclusive clinical evaluations and to clarify the recurrence risk in the families. Additionally, it shows that the phenotype of more than 50% of the patients with suspected Rothmund-Thomson disease may be due to mutations in other genes raising the need for further extended genetic analyses.

SELECTION OF CITATIONS
SEARCH DETAIL