Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Proc Natl Acad Sci U S A ; 121(24): e2320517121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38848301

ABSTRACT

Self-propelling organisms locomote via generation of patterns of self-deformation. Despite the diversity of body plans, internal actuation schemes and environments in limbless vertebrates and invertebrates, such organisms often use similar traveling waves of axial body bending for movement. Delineating how self-deformation parameters lead to locomotor performance (e.g. speed, energy, turning capabilities) remains challenging. We show that a geometric framework, replacing laborious calculation with a diagrammatic scheme, is well-suited to discovery and comparison of effective patterns of wave dynamics in diverse living systems. We focus on a regime of undulatory locomotion, that of highly damped environments, which is applicable not only to small organisms in viscous fluids, but also larger animals in frictional fluids (sand) and on frictional ground. We find that the traveling wave dynamics used by mm-scale nematode worms and cm-scale desert dwelling snakes and lizards can be described by time series of weights associated with two principal modes. The approximately circular closed path trajectories of mode weights in a self-deformation space enclose near-maximal surface integral (geometric phase) for organisms spanning two decades in body length. We hypothesize that such trajectories are targets of control (which we refer to as "serpenoid templates"). Further, the geometric approach reveals how seemingly complex behaviors such as turning in worms and sidewinding snakes can be described as modulations of templates. Thus, the use of differential geometry in the locomotion of living systems generates a common description of locomotion across taxa and provides hypotheses for neuromechanical control schemes at lower levels of organization.


Subject(s)
Lizards , Locomotion , Animals , Locomotion/physiology , Lizards/physiology , Snakes/physiology , Biomechanical Phenomena , Models, Biological
2.
J Exp Biol ; 226(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36628924

ABSTRACT

Snake strikes are some of the most rapid accelerations in terrestrial vertebrates. Generating rapid body accelerations requires high ground reaction forces, but on flat surfaces snakes must rely on static friction to prevent slip. We hypothesize that snakes may be able to take advantage of structures in the environment to prevent their body from slipping, potentially allowing them to generate faster and more forceful strikes. To test this hypothesis, we captured high-speed video and forces from defensive strikes of juvenile blood pythons (Python brongersmai) on a platform that was either open on all sides or with two adjacent walls opposite the direction of the strike. Contrary to our predictions, snakes maintained high performance on open platforms by imparting rearward momentum to the posterior body and tail. This compensatory behavior increases robustness to changes in their strike conditions and could allow them to exploit variable environments.


Subject(s)
Boidae , Animals , Biomechanical Phenomena , Predatory Behavior , Acceleration , Friction
3.
J Exp Biol ; 224(13)2021 07 01.
Article in English | MEDLINE | ID: mdl-34151369

ABSTRACT

Lateral undulation is the most widespread mode of terrestrial vertebrate limbless locomotion, in which posteriorly propagating horizontal waves press against environmental asperities (e.g. grass, rocks) and generate propulsive reaction forces. We hypothesized that snakes can generate propulsion using a similar mechanism of posteriorly propagating vertical waves pressing against suitably oriented environmental asperities. Using an array of horizontally oriented cylinders, one of which was equipped with force sensors, and a motion capture system, we found snakes generated substantial propulsive force and propulsive impulse with minimal contribution from lateral undulation. Additional tests showed that snakes could propel themselves via vertical undulations from a single suitable contact point, and this mechanism was replicated in a robotic model. Vertical undulations can provide snakes with a valuable locomotor tool for taking advantage of vertical asperities in a variety of habitats, potentially in combination with lateral undulation, to fully exploit the 3D structure of the habitat.


Subject(s)
Robotics , Snakes , Animals , Biomechanical Phenomena , Ecosystem , Locomotion
4.
J Exp Biol ; 223(Pt 7)2020 04 09.
Article in English | MEDLINE | ID: mdl-32127376

ABSTRACT

Variation in joint shape and soft tissue can alter range of motion (ROM) and create trade-offs between stability and flexibility. The shape of the distinctive zygosphene-zygantrum joint of snake vertebrae has been hypothesized to prevent axial torsion (twisting), but its function has never been tested experimentally. We used experimental manipulation of morphology to determine the role of the zygosphene-zygantrum articulation by micro-computed tomography (µCT) scanning and 3D printing two mid-body vertebrae with unaltered shape and with the zygosphene digitally removed for four species of phylogenetically diverse snakes. We recorded the angular ROM while manipulating the models in yaw (lateral bending), pitch (dorsoventral bending) and roll (axial torsion). Removing the zygosphene typically increased yaw and dorsal pitch ROM. In the normal vertebrae, roll was <2.5 deg for all combinations of pitch and yaw. Roll increased in altered vertebrae but only for combinations of high yaw and ventral pitch that were near or beyond the limits of normal vertebra ROM. In the prairie rattlesnake and brown tree snake, roll in the altered vertebrae was always limited by bony processes other than the zygosphene, whereas in the altered vertebrae of the corn snake and boa constrictor, roll ROM was unconstrained when the pre- and post-zygapophyses no longer overlapped. The zygosphene acts as a bony limit for yaw and dorsal pitch, indirectly preventing roll by precluding most pitch and yaw combinations where roll could occur and potentially allowing greater forces to be applied across the vertebral column than would be possible with only soft-tissue constraints.


Subject(s)
Snakes , Spine , Animals , Biomechanical Phenomena , Range of Motion, Articular , Spine/diagnostic imaging , X-Ray Microtomography
5.
J Exp Biol ; 223(Pt 5)2020 02 28.
Article in English | MEDLINE | ID: mdl-32111654

ABSTRACT

Animals moving on and in fluids and solids move their bodies in diverse ways to generate propulsion and lift forces. In fluids, animals can wiggle, stroke, paddle or slap, whereas on hard frictional terrain, animals largely engage their appendages with the substrate to avoid slip. Granular substrates, such as desert sand, can display complex responses to animal interactions. This complexity has led to locomotor strategies that make use of fluid-like or solid-like features of this substrate, or combinations of the two. Here, we use examples from our work to demonstrate the diverse array of methods used and insights gained in the study of both surface and subsurface limbless locomotion in these habitats. Counterintuitively, these seemingly complex granular environments offer certain experimental, theoretical, robotic and computational advantages for studying terrestrial movement, with the potential for providing broad insights into morphology and locomotor control in fluids and solids, including neuromechanical control templates and morphological and behavioral evolution. In particular, granular media provide an excellent testbed for a locomotion framework called geometric mechanics, which was introduced by particle physicists and control engineers in the last century, and which allows quantitative analysis of alternative locomotor patterns and morphology to test for control templates, optimality and evolutionary alternatives. Thus, we posit that insights gained from movement in granular environments can be translated into principles that have broader applications across taxa, habitats and movement patterns, including those at microscopic scales.


Subject(s)
Lizards/physiology , Locomotion , Sand , Snakes/physiology , Animals , Biomechanical Phenomena , Extremities/anatomy & histology
6.
Front Zool ; 16: 19, 2019.
Article in English | MEDLINE | ID: mdl-31210775

ABSTRACT

BACKGROUND: Mucus and mucus glands are important features of the amphibian cutis. In tree frogs, the mucus glands and their secretions are crucial components of the adhesive digital pads of these animals. Despite a variety of hypothesised functions of these components in tree frog attachment, the functional morphology of the digital mucus glands and the chemistry of the digital mucus are barely known. Here, we use an interdisciplinary comparative approach to analyse these components, and discuss their roles in tree frog attachment. RESULTS: Using synchrotron micro-computer-tomography, we discovered in the arboreal frog Hyla cinerea that the ventral digital mucus glands differ in their morphology from regular anuran mucus glands and form a subdermal gland cluster. We show the presence of this gland cluster also in several other-not exclusively arboreal-anuran families. Using cryo-histochemistry as well as infrared and sum frequency generation spectroscopy on the mucus of two arboreal (H. cinerea and Osteopilus septentrionalis) and of two terrestrial, non-climbing frog species (Pyxicephalus adspersus and Ceratophrys cranwelli), we find neutral and acidic polysaccharides, and indications for proteinaceous and lipid-like mucus components. The mucus chemistry varies only little between dorsal and ventral digital mucus in H. cinerea, ventral digital and abdominal mucus in H. cinerea and O. septentrionalis, and between the ventral abdominal mucus of all four studied species. CONCLUSIONS: The presence of a digital mucus gland cluster in various anuran families, as well as the absence of differences in the mucus chemistry between arboreal and non-arboreal frog species indicate an adaptation towards generic functional requirements as well as to attachment-related requirements. Overall, this study contributes to the understanding of the role of glands and their secretions in tree frog attachment and in bioadhesion in general, as well as the evolution of anurans.

7.
Proc Natl Acad Sci U S A ; 112(19): 6200-5, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25831489

ABSTRACT

Many organisms move using traveling waves of body undulation, and most work has focused on single-plane undulations in fluids. Less attention has been paid to multiplane undulations, which are particularly important in terrestrial environments where vertical undulations can regulate substrate contact. A seemingly complex mode of snake locomotion, sidewinding, can be described by the superposition of two waves: horizontal and vertical body waves with a phase difference of ± 90°. We demonstrate that the high maneuverability displayed by sidewinder rattlesnakes (Crotalus cerastes) emerges from the animal's ability to independently modulate these waves. Sidewinder rattlesnakes used two distinct turning methods, which we term differential turning (26° change in orientation per wave cycle) and reversal turning (89°). Observations of the snakes suggested that during differential turning the animals imposed an amplitude modulation in the horizontal wave whereas in reversal turning they shifted the phase of the vertical wave by 180°. We tested these mechanisms using a multimodule snake robot as a physical model, successfully generating differential and reversal turning with performance comparable to that of the organisms. Further manipulations of the two-wave system revealed a third turning mode, frequency turning, not observed in biological snakes, which produced large (127°) in-place turns. The two-wave system thus functions as a template (a targeted motor pattern) that enables complex behaviors in a high-degree-of-freedom system to emerge from relatively simple modulations to a basic pattern. Our study reveals the utility of templates in understanding the control of biological movement as well as in developing control schemes for limbless robots.


Subject(s)
Crotalus/physiology , Locomotion/physiology , Algorithms , Animals , Biomechanical Phenomena , Environment , Image Processing, Computer-Assisted , Orientation , Robotics
8.
J Exp Biol ; 219(Pt 19): 3163-3173, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27707867

ABSTRACT

Anuran jumping is a model system for linking muscle physiology to organismal performance. However, anuran species display substantial diversity in their locomotion, with some species performing powerful leaps from riverbanks or tree branches, while other species move predominantly via swimming, short hops or even diagonal-sequence gaits. Furthermore, many anurans with similar locomotion and morphology are actually convergent (e.g. multiple independent evolutions of 'tree frogs'), while closely related species may differ drastically, as with the walking toad (Melanophryniscus stelzneri) and bullfrog-like river toad (Phrynoides aspera) compared with other Bufonid toads. These multiple independent evolutionary changes in locomotion allow us to test the hypothesis that evolutionary increases in locomotor performance will be linked to the evolution of faster, high-power muscles. I tested the jumping, swimming and walking (when applicable) performance of 14 species of anurans and one salamander, followed by measurement of the contractile properties of the semimembranosus and plantaris longus muscles and anatomical measurements, using phylogenetic comparative methods. I found that increased jumping performance correlated to muscle contractile properties associated with muscle speed (e.g. time to peak tetanus, maximum shortening speed, peak isotonic power), and was tightly linked to relevant anatomical traits (e.g. leg length, muscle mass). Swimming performance was not correlated to jumping, and was correlated with fewer anatomical and muscular variables. Thus, muscle properties evolve along with changes in anatomy to produce differences in overall locomotor performance.


Subject(s)
Anura/physiology , Biological Evolution , Locomotion/physiology , Muscle, Skeletal/physiology , Animals , Biomechanical Phenomena , Linear Models , Muscle Contraction/physiology , Phylogeny , Principal Component Analysis , Swimming/physiology , Walking/physiology
9.
J Exp Biol ; 218(Pt 21): 3360-3, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26538173

ABSTRACT

Arboreal animals often move on compliant branches, which may deform substantially under loads, absorbing energy. Energy stored in a compliant substrate may be returned to the animal or it may be lost. In all cases studied so far, animals jumping from a static start lose all of the energy imparted to compliant substrates and performance is reduced. Cuban tree frogs (Osteopilus septentrionalis) are particularly capable arboreal jumpers, and we hypothesized that these animals would be able to recover energy from perches of varying compliance. In spite of large deflections of the perches and consequent substantial energy absorption, frogs were able to regain some of the energy lost to the perch during the recoil. Takeoff velocity was robust to changes in compliance, but was lower than when jumping from flat surfaces. This highlights the ability of animals to minimize energy loss and maintain dependable performance on challenging substrates via behavioral changes.


Subject(s)
Anura/physiology , Locomotion/physiology , Animals , Biomechanical Phenomena , Surface Properties
10.
J Exp Biol ; 217(Pt 24): 4372-8, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25520385

ABSTRACT

Many animals use catapult mechanisms to produce extremely rapid movements for escape or prey capture, resulting in power outputs far beyond the limits of muscle. In these catapults, muscle contraction loads elastic structures, which then recoil to release the stored energy extremely rapidly. Many arthropods employ anatomical 'catch mechanisms' to lock the joint in place during the loading period, which can then be released to allow joint motion via elastic recoil. Jumping vertebrates lack a clear anatomical catch, yet face the same requirement to load the elastic structure prior to movement. There are several potential mechanisms to allow loading of vertebrate elastic structures, including the gravitational load of the body, a variable mechanical advantage, and moments generated by the musculature of proximal joints. To test these hypothesized mechanisms, we collected simultaneous 3D kinematics via X-ray Reconstruction of Moving Morphology (XROMM) and single-foot forces during the jumps of three Rana pipiens. We calculated joint mechanical advantage, moment and power using inverse dynamics at the ankle, knee, hip and ilio-sacral joints. We found that the increasing proximal joint moments early in the jump allowed for high ankle muscle forces and elastic pre-loading, and the subsequent reduction in these moments allowed the ankle to extend using elastic recoil. Mechanical advantage also changed throughout the jump, with the muscle contracting against a poor mechanical advantage early in the jump during loading and a higher mechanical advantage late in the jump during recoil. These 'dynamic catch mechanisms' serve to resist joint motion during elastic loading, then allow it during elastic recoil, functioning as a catch mechanism based on the balance and orientation of forces throughout the limb rather than an anatomical catch.


Subject(s)
Joints/physiology , Locomotion , Muscle, Skeletal/physiology , Rana pipiens/physiology , Animals , Biomechanical Phenomena , Elasticity , Energy Transfer , Extremities/physiology , Imaging, Three-Dimensional , Muscle Contraction
11.
Ann N Y Acad Sci ; 1533(1): 16-37, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367220

ABSTRACT

Organismal solutions to natural challenges can spark creative engineering applications. However, most engineers are not experts in organismal biology, creating a potential barrier to maximally effective bioinspired design. In this review, we aim to reduce that barrier with respect to a group of organisms that hold particular promise for a variety of applications: snakes. Representing >10% of tetrapod vertebrates, snakes inhabit nearly every imaginable terrestrial environment, moving with ease under many conditions that would thwart other animals. To do so, they employ over a dozen different types of locomotion (perhaps well over). Lacking limbs, they have evolved axial musculoskeletal features that enable their vast functional diversity, which can vary across species. Different species also have various skin features that provide numerous functional benefits, including frictional anisotropy or isotropy (as their locomotor habits demand), waterproofing, dirt shedding, antimicrobial properties, structural colors, and wear resistance. Snakes clearly have much to offer to the fields of robotics and materials science. We aim for this review to increase knowledge of snake functional diversity by facilitating access to the relevant literature.


Subject(s)
Locomotion , Snakes , Animals , Biomechanical Phenomena , Skin , Extremities
12.
J Morphol ; 284(6): e21591, 2023 06.
Article in English | MEDLINE | ID: mdl-37183497

ABSTRACT

Muscles spanning multiple joints play important functional roles in a wide range of systems across tetrapods; however, their fundamental mechanics are poorly understood, particularly the consequences of anatomical position on mechanical advantage. Snakes provide an excellent study system for advancing this topic. They rely on the axial muscles for many activities, including striking, constriction, defensive displays, and locomotion. Moreover, those muscles span from one or a few vertebrae to over 30, and anatomy varies among muscles and among species. We characterized the anatomy of major epaxial muscles in a size series of corn snakes (Pantherophis guttatus) using diceCT scans, and then took several approaches to calculating contributions of each muscle to force and motion generated during body bending, starting from a highly simplistic model and moving to increasingly complex and realistic models. Only the most realistic model yielded equations that included the consequence of muscle span on torque-displacement trade-offs, as well as resolving ambiguities that arose from simpler models. We also tested whether muscle cross-sectional areas or lever arms (total magnitude or pitch/yaw/roll components) were related to snake mass, longitudinal body region (anterior, middle, posterior), and/or muscle group (semispinalis-spinalis, multifidus, longissimus dorsi, iliocostalis, and levator costae). Muscle cross-sectional areas generally scaled with positive allometry, and most lever arms did not depart significantly from geometric similarity (isometry). The levator costae had lower cross-sectional area than the four epaxial muscles, which did not differ significantly from each other in cross-sectional area. Lever arm total magnitudes and components differed among muscles. We found some evidence for regional variation, indicating that functional regionalization merits further investigation. Our results contribute to knowledge of snake muscles specifically and multiarticular muscle systems generally, providing a foundation for future comparisons across species and bioinspired multiarticular systems.


Subject(s)
Colubridae , Muscle, Skeletal , Animals , Muscle, Skeletal/anatomy & histology , Locomotion/physiology , Spine/anatomy & histology
13.
J Exp Biol ; 215(Pt 11): 1923-9, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22573771

ABSTRACT

Brittle stars (Ophiuroidea, Echinodermata) are pentaradially symmetrical echinoderms that use five multi-jointed limbs to locomote along the seafloor. Prior qualitative descriptions have claimed coordinated movements of the limbs in a manner similar to tetrapod vertebrates, but this has not been evaluated quantitatively. It is uncertain whether the ring-shaped nervous system, which lacks an anatomically defined anterior, is capable of generating rhythmic coordinated movements of multiple limbs. This study tested whether brittle stars possess distinct locomotor modes with strong inter-limb coordination as seen in limbed animals in other phyla (e.g. tetrapods and arthropods), or instead move each limb independently according to local sensory feedback. Limb tips and the body disk were digitized for 56 cycles from 13 individuals moving across sand. Despite their pentaradial anatomy, all individuals were functionally bilateral, moving along the axis of a central limb via synchronous motions of contralateral limbs (±~13% phase lag). Two locomotor modes were observed, distinguishable mainly by whether the central limb was directed forwards or backwards. Turning was accomplished without rotation of the body disk by defining a different limb as the center limb and shifting other limb identities correspondingly, and then continuing locomotion in the direction of the newly defined anterior. These observations support the hypothesis that, in spite of their radial body plan, brittle stars employ coordinated, bilaterally symmetrical locomotion.


Subject(s)
Echinodermata/anatomy & histology , Echinodermata/physiology , Animals , Biomechanical Phenomena , Extremities/innervation , Extremities/physiology , Feedback, Sensory/physiology , Locomotion/physiology , Models, Biological , Periodicity
14.
Biol Lett ; 8(3): 386-9, 2012 Jun 23.
Article in English | MEDLINE | ID: mdl-22090204

ABSTRACT

Anuran jumping is one of the most powerful accelerations in vertebrate locomotion. Several species are hypothesized to use a catapult-like mechanism to store and rapidly release elastic energy, producing power outputs far beyond the capability of muscle. Most evidence for this mechanism comes from measurements of whole-body power output; the decoupling of joint motion and muscle shortening expected in a catapult-like mechanism has not been demonstrated. We used high-speed marker-based biplanar X-ray cinefluoroscopy to quantify plantaris muscle fascicle strain and ankle joint motion in frogs in order to test for two hallmarks of a catapult mechanism: (i) shortening of fascicles prior to joint movement (during tendon stretch), and (ii) rapid joint movement during the jump without rapid muscle-shortening (during tendon recoil). During all jumps, muscle fascicles shortened by an average of 7.8 per cent (54% of total strain) prior to joint movement, stretching the tendon. The subsequent period of initial joint movement and high joint angular acceleration occurred with minimal muscle fascicle length change, consistent with the recoil of the elastic tendon. These data support the plantaris longus tendon as a site of elastic energy storage during frog jumping, and demonstrate that catapult mechanisms may be employed even in sub-maximal jumps.


Subject(s)
Extremities/physiology , Joints/physiology , Locomotion , Muscle, Skeletal/physiology , Rana pipiens/physiology , Animals , Biomechanical Phenomena , Elasticity , Fluoroscopy , Imaging, Three-Dimensional , Tendons/physiology , Video Recording
15.
Bioinspir Biomim ; 17(3)2022 04 20.
Article in English | MEDLINE | ID: mdl-35235918

ABSTRACT

Terrestrial locomotion requires generating appropriate ground reaction forces which depend on substrate geometry and physical properties. The richness of positions and orientations of terrain features in the 3D world gives limbless animals like snakes that can bend their body versatility to generate forces from different contact areas for propulsion. Despite many previous studies of how snakes use lateral body bending for propulsion on relatively flat surfaces with lateral contact points, little is known about whether and how much snakes use vertical body bending in combination with lateral bending in 3D terrain. This lack had contributed to snake robots being inferior to animals in stability, efficiency, and versatility when traversing complex 3D environments. Here, to begin to elucidate this, we studied how the generalist corn snake traversed an uneven arena of blocks of random height variation five times its body height. The animal traversed the uneven terrain with perfect stability by propagating 3D bending down its body with little transverse motion (11° slip angle). Although the animal preferred moving through valleys with higher neighboring blocks, it did not prefer lateral bending. Among body-terrain contact regions that potentially provide propulsion, 52% were formed by vertical body bending and 48% by lateral bending. The combination of vertical and lateral bending may dramatically expand the sources of propulsive forces available to limbless locomotors by utilizing various asperities available in 3D terrain. Direct measurements of contact forces are necessary to further understand how snakes coordinate 3D bending along the entire body via sensory feedback to propel through 3D terrain. These studies will open a path to new propulsive mechanisms for snake robots, potentially increasing the performance and versatility in 3D terrain.


Subject(s)
Feedback, Sensory , Locomotion , Animals , Biomechanical Phenomena , Motion
16.
Integr Org Biol ; 4(1): obac040, 2022.
Article in English | MEDLINE | ID: mdl-36158732

ABSTRACT

The force-generating capacity of muscle depends upon many factors including the actin-myosin filament overlap due to the relative length of the sarcomere. Consequently, the force output of a muscle may vary throughout its range of motion, and the body posture allowing maximum force generation may differ even in otherwise similar species. We hypothesized that corn snakes would show an ontogenetic shift in sarcomere length range from being centered on the plateau of the length-tension curve in small individuals to being on the descending limb in adults. Sarcomere lengths across the plateau would be advantageous for locomotion, while the descending limb would be advantageous for constriction due to the increase in force as the coil tightens around the prey. To test this hypothesis, we collected sarcomere lengths from freshly euthanized corn snakes, preserving segments in straight and maximally curved postures, and quantifying sarcomere length via light microscopy. We dissected 7 muscles (spinalis, semispinalis, multifidus, longissimus dorsi, iliocostalis (dorsal and ventral), and levator costae) in an ontogenetic series of corn snakes (mass = 80-335 g) at multiple regions along the body (anterior, middle, and posterior). Our data shows all of the muscles analyzed are on the descending limb of the length-tension curve at rest across all masses, regions, and muscles analyzed, with muscles shortening onto or past the plateau when flexed. While these results are consistent with being advantageous for constriction at all sizes, there could also be unknown benefits of this sarcomere arrangement for locomotion or striking.

17.
Bioinspir Biomim ; 16(3)2021 04 12.
Article in English | MEDLINE | ID: mdl-33601364

ABSTRACT

Fish robots have many possible applications in exploration, industry, research, and continue to increase in design complexity, control, and the behaviors they can complete. Maneuverability is an important metric of fish robot performance, with several strategies being implemented. By far the most common control scheme for fish robot maneuvers is an offset control scheme, wherein the robot's steady swimming is controlled by sinusoidal function and turns are generated biasing bending to one side or another. An early bio-inspired turn control scheme is based on the C-start escape response observed in live fish. We developed a control scheme that is based on the kinematics of routine maneuvers in live fish that we call the 'pulse', which is a pattern of increasing and decreasing curvature that propagates down the body. This pattern of curvature is consistent across a wide range of turn types and can be described with a limited number of variables. We compared the performance of turns using each of these three control schemes across a range of durations and bending amplitudes. We found that C-start and offset turns had the highest heading changes for a given set of inputs, whereas the bio-inspired pulse turns had the highest linear accelerations for a given set of inputs. However, pulses shift the conceptualization of swimming away from it being a continuous behavior towards it being an intermittent behavior that is built by combining individual bending events. Our bio-inspired pulse control scheme has the potential to increase the behavioral flexibility of bio-inspired robotic fish and solve some of the problems associated with integrating different swimming behaviors, despite lower maximal turning performance.


Subject(s)
Robotics , Acceleration , Animals , Biomechanical Phenomena , Fishes , Swimming
18.
Integr Org Biol ; 3(1): obaa047, 2021.
Article in English | MEDLINE | ID: mdl-33977229

ABSTRACT

Effective cardiac contraction during each heartbeat relies on the coordination of an electrical wave of excitation propagating across the heart. Dynamically induced heterogeneous wave propagation may fracture and initiate reentry-based cardiac arrhythmias, during which fast-rotating electrical waves lead to repeated self-excitation that compromises cardiac function and potentially results in sudden cardiac death. Species which function effectively over a large range of heart temperatures must balance the many interacting, temperature-sensitive biochemical processes to maintain normal wave propagation at all temperatures. To investigate how these species avoid dangerous states across temperatures, we optically mapped the electrical activity across the surfaces of alligator (Alligator mississippiensis) hearts at 23°C and 38°C over a range of physiological heart rates and compare them with that of rabbits (Oryctolagus cuniculus). We find that unlike rabbits, alligators show minimal changes in wave parameters (action potential duration and conduction velocity) which complement each other to retain similar electrophysiological wavelengths across temperatures and pacing frequencies. The cardiac electrophysiology of rabbits accommodates the high heart rates necessary to sustain an active and endothermic metabolism at the cost of increased risk of cardiac arrhythmia and critical vulnerability to temperature changes, whereas that of alligators allows for effective function over a range of heart temperatures without risk of cardiac electrical arrhythmias such as fibrillation, but is restricted to low heart rates. Synopsis La contracción cardíaca efectiva durante cada latido del corazón depende de la coordinación de una onda eléctrica de excitación que se propaga a través del corazón. Heterogéidades inducidas dinámicamente por ondas de propagación pueden resultar en fracturas de las ondas e iniciar arritmias cardíacas basadas en ondas de reingreso, durante las cuales ondas espirales eléctricas de rotación rápida producen una autoexcitación repetida que afecta la función cardíaca y pude resultar en muerte súbita cardíaca. Las especies que funcionan eficazmente en una amplia gama de temperaturas cardíacas deben equilibrar los varios procesos bioquímicos que interactúan, sensibles a la temperatura para mantener la propagación normal de ondas a todas las temperaturas. Para investigar cómo estas especies evitan los estados peligrosos a través de las temperaturas, mapeamos ópticamente la actividad eléctrica a través de las superficies de los corazones de caimanes (Alligator mississippiensis) a 23°C and 38°C sobre un rango de frecuencias fisiológicas del corazón y comparamos con el de los conejos (Oryctolagus cuniculus). Encontramos que a diferencia de los conejos, los caimanes muestran cambios mínimos en los parámetros de onda (duración potencial de acción y velocidad de conducción) que se complementan entre sí para retener longitudes de onda electrofisiológicas similares a través de los rangos de temperaturas y frecuencias de ritmo. La electrofisiología cardíaca de los conejos acomoda las altas frecuencias cardíacas necesarias para mantener un metabolismo activo y endotérmico a costa de un mayor riesgo de arritmia cardíaca y vulnerabilidad crítica a los cambios de temperatura, mientras que la de los caimanes permite un funcionamiento eficaz en una serie de temperaturas cardíacas sin riesgo de arritmias eléctricas cardíacas como la fibrilación, pero está restringida a bajas frecuencias cardíacas.

19.
Integr Comp Biol ; 60(1): 134-139, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32699901

ABSTRACT

Elongate, limbless body plans are widespread in nature and frequently converged upon (with over two dozen independent convergences in Squamates alone, and many outside of Squamata). Despite their lack of legs, these animals move effectively through a wide range of microhabitats, and have a particular advantage in cluttered or confined environments. This has elicited interest from multiple disciplines in many aspects of their movements, from how and when limbless morphologies evolve to the biomechanics and control of limbless locomotion within and across taxa to its replication in elongate robots. Increasingly powerful tools and technology enable more detailed examinations of limbless locomotor biomechanics, and improved phylogenies have shed increasing light on the origins and evolution of limblessness, as well as the high frequency of convergence. Advances in actuators and control are increasing the capability of "snakebots" to solve real-world problems (e.g., search and rescue), while biological data have proven to be a potent inspiration for improvements in snakebot control. This collection of research brings together prominent researchers on the topic from around the world, including biologists, physicists, and roboticists to offer new perspective on locomotor modes, musculoskeletal mechanisms, locomotor control, and the evolution and diversity of limbless locomotion.


Subject(s)
Lizards/physiology , Locomotion/physiology , Snakes/physiology , Animals , Biomechanical Phenomena , Environment
20.
Integr Comp Biol ; 60(1): 140-155, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32211841

ABSTRACT

The geometry of the musculoskeletal system, such as moment arms and linkages, determines the link between muscular functions and external mechanical results, but as the geometry becomes more complex, this link becomes less clear. The musculoskeletal system of snakes is extremely complex, with several muscles that span dozens of vertebrae, ranging from 10 to 45 vertebrae in the snake semispinalis-spinalis muscle (a dorsiflexor). Furthermore, this span correlates with habitat in Caenophidians, with burrowing and aquatic species showing shorter spans while arboreal species show longer spans. Similar multi-articular spans are present in the prehensile tails of primates, the necks of birds, and our own digits. However, no previous analysis has adequately explained the mechanical consequences of these multi-articular spans. This paper uses techniques from the analysis of static systems in engineering to analyze the consequences of multiarticular muscle configurations in cantilevered gap bridging and compares these outcomes to a hypothetical mono-articular system. Multi-articular muscle spans dramatically reduce the forces needed in each muscle, but the consequent partitioning of muscle cross-sectional area between numerous muscles results in a small net performance loss. However, when a substantial fraction of this span is tendinous, performance increases dramatically. Similarly, metabolic cost is increased for purely muscular multi-articular spans, but decreases rapidly with increasing tendon ratio. However, highly tendinous spans require increased muscle strain to achieve the same motion, while purely muscular systems are unaffected. These results correspond well with comparative data from snakes and offer the potential to dramatically improve the mechanics of biomimetic snake robots.


Subject(s)
Locomotion/physiology , Muscle, Skeletal/physiology , Snakes/physiology , Tendons/physiology , Animals , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL