Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(38): e2210604119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36103580

ABSTRACT

Inferring the transmission direction between linked individuals living with HIV provides unparalleled power to understand the epidemiology that determines transmission. Phylogenetic ancestral-state reconstruction approaches infer the transmission direction by identifying the individual in whom the most recent common ancestor of the virus populations originated. While these methods vary in accuracy, it is unclear why. To evaluate the performance of phylogenetic ancestral-state reconstruction to determine the transmission direction of HIV-1 infection, we inferred the transmission direction for 112 transmission pairs where transmission direction and detailed additional information were available. We then fit a statistical model to evaluate the extent to which epidemiological, sampling, genetic, and phylogenetic factors influenced the outcome of the inference. Finally, we repeated the analysis under real-life conditions with only routinely available data. We found that whether ancestral-state reconstruction correctly infers the transmission direction depends principally on the phylogeny's topology. For example, under real-life conditions, the probability of identifying the correct transmission direction increases from 32%-when a monophyletic-monophyletic or paraphyletic-polyphyletic tree topology is observed and when the tip closest to the root does not agree with the state at the root-to 93% when a paraphyletic-monophyletic topology is observed and when the tip closest to the root agrees with the root state. Our results suggest that documenting larger differences in relative intrahost diversity increases our confidence in the transmission direction inference of linked pairs for population-level studies of HIV. These findings provide a practical starting point to determine our confidence in transmission direction inference from ancestral-state reconstruction.


Subject(s)
HIV Infections , HIV-1 , Sexual Partners , Female , HIV Infections/transmission , HIV Infections/virology , Humans , Male , Models, Statistical , Phylogeny , Sexual Partners/classification
2.
Proc Natl Acad Sci U S A ; 119(37): e2203019119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36074818

ABSTRACT

The global spread of coronavirus disease 2019 (COVID-19) has emphasized the need for evidence-based strategies for the safe operation of schools during pandemics that balance infection risk with the society's responsibility of allowing children to attend school. Due to limited empirical data, existing analyses assessing school-based interventions in pandemic situations often impose strong assumptions, for example, on the relationship between class size and transmission risk, which could bias the estimated effect of interventions, such as split classes and staggered attendance. To fill this gap in school outbreak studies, we parameterized an individual-based model that accounts for heterogeneous contact rates within and between classes and grades to a multischool outbreak data of influenza. We then simulated school outbreaks of respiratory infectious diseases of ongoing threat (i.e., COVID-19) and potential threat (i.e., pandemic influenza) under a variety of interventions (changing class structures, symptom screening, regular testing, cohorting, and responsive class closures). Our results suggest that interventions changing class structures (e.g., reduced class sizes) may not be effective in reducing the risk of major school outbreaks upon introduction of a case and that other precautionary measures (e.g., screening and isolation) need to be employed. Class-level closures in response to detection of a case were also suggested to be effective in reducing the size of an outbreak.


Subject(s)
Disease Outbreaks , Pandemics , Respiratory Tract Infections , Schools , COVID-19/prevention & control , COVID-19/transmission , Child , Computer Simulation , Disease Outbreaks/prevention & control , Humans , Influenza, Human/prevention & control , Influenza, Human/transmission , Pandemics/prevention & control , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/transmission
3.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: mdl-34753823

ABSTRACT

Schools play a central role in the transmission of many respiratory infections. Heterogeneous social contact patterns associated with the social structures of schools (i.e., classes/grades) are likely to influence the within-school transmission dynamics, but data-driven evidence on fine-scale transmission patterns between students has been limited. Using a mathematical model, we analyzed a large-scale dataset of seasonal influenza outbreaks in Matsumoto city, Japan, to infer social interactions within and between classes/grades from observed transmission patterns. While the relative contribution of within-class and within-grade transmissions to the reproduction number varied with the number of classes per grade, the overall within-school reproduction number, which determines the initial growth of cases and the risk of sustained transmission, was only minimally associated with class sizes and the number of classes per grade. This finding suggests that interventions that change the size and number of classes, e.g., splitting classes and staggered attendance, may have a limited effect on the control of school outbreaks. We also found that vaccination and mask-wearing of students were associated with reduced susceptibility (vaccination and mask-wearing) and infectiousness (mask-wearing), and hand washing was associated with increased susceptibility. Our results show how analysis of fine-grained transmission patterns between students can improve understanding of within-school disease dynamics and provide insights into the relative impact of different approaches to outbreak control.


Subject(s)
Influenza, Human/epidemiology , Influenza, Human/transmission , Child , Child, Preschool , Cities/epidemiology , Disease Outbreaks , Female , Humans , Influenza, Human/virology , Japan/epidemiology , Male , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/transmission , Respiratory Tract Infections/virology , Schools , Seasons , Social Structure , Students
4.
BMC Infect Dis ; 21(1): 1243, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34895141

ABSTRACT

BACKGROUND: Higher incidence of and risk of hospitalisation and death from Influenza A(H1N1)pdm09 during the 2009 pandemic was reported in ethnic minority groups in many high-income settings including in the United Kingdom (UK). Many of these studies rely on geographical and temporal aggregation of cases and can be difficult to interpret due to the spatial and temporal factors in outbreak spread. Further, it can be challenging to distinguish between disparities in health outcomes caused by variation in transmission risk or disease severity. METHODS: We used anonymised laboratory confirmed and suspected case data, classified by ethnicity and deprivation status, to evaluate how disparities in risk between socio-economic and ethnic groups vary over the early stages of the 2009 Influenza A(H1N1)pdm09 epidemic in Birmingham and London, two key cities in the emergence of the UK epidemic. We evaluated the relative risk of infection in key ethnic minority groups and by national and city level deprivation rank. RESULTS: We calculated higher incidence in more deprived areas and in people of South Asian ethnicity in both Birmingham and London, although the magnitude of these disparities reduced with time. The clearest disparities existed in school-aged children in Birmingham, where the most deprived fifth of the population was 2.8 times more likely to be infected than the most affluent fifth of the population. CONCLUSIONS: Our analysis shows that although disparities in reported cases were present in the early phase of the Influenza A(H1N1)pdm09 outbreak in both Birmingham and London, they vary substantially depending on the period over which they are measured. Further, the development of disparities suggest that clustering of social groups play a key part as the outbreak appears to move from one ethnic and socio-demographic group to another. Finally, high incidence and large disparities between children indicate that they may hold an important role in driving inequalities.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Child , Ethnic and Racial Minorities , Ethnicity , Humans , Influenza, Human/epidemiology , Minority Groups , Socioeconomic Factors , United Kingdom/epidemiology
5.
BMC Health Serv Res ; 21(1): 566, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34107928

ABSTRACT

BACKGROUND: Predicting bed occupancy for hospitalised patients with COVID-19 requires understanding of length of stay (LoS) in particular bed types. LoS can vary depending on the patient's "bed pathway" - the sequence of transfers of individual patients between bed types during a hospital stay. In this study, we characterise these pathways, and their impact on predicted hospital bed occupancy. METHODS: We obtained data from University College Hospital (UCH) and the ISARIC4C COVID-19 Clinical Information Network (CO-CIN) on hospitalised patients with COVID-19 who required care in general ward or critical care (CC) beds to determine possible bed pathways and LoS. We developed a discrete-time model to examine the implications of using either bed pathways or only average LoS by bed type to forecast bed occupancy. We compared model-predicted bed occupancy to publicly available bed occupancy data on COVID-19 in England between March and August 2020. RESULTS: In both the UCH and CO-CIN datasets, 82% of hospitalised patients with COVID-19 only received care in general ward beds. We identified four other bed pathways, present in both datasets: "Ward, CC, Ward", "Ward, CC", "CC" and "CC, Ward". Mean LoS varied by bed type, pathway, and dataset, between 1.78 and 13.53 days. For UCH, we found that using bed pathways improved the accuracy of bed occupancy predictions, while only using an average LoS for each bed type underestimated true bed occupancy. However, using the CO-CIN LoS dataset we were not able to replicate past data on bed occupancy in England, suggesting regional LoS heterogeneities. CONCLUSIONS: We identified five bed pathways, with substantial variation in LoS by bed type, pathway, and geography. This might be caused by local differences in patient characteristics, clinical care strategies, or resource availability, and suggests that national LoS averages may not be appropriate for local forecasts of bed occupancy for COVID-19. TRIAL REGISTRATION: The ISARIC WHO CCP-UK study ISRCTN66726260 was retrospectively registered on 21/04/2020 and designated an Urgent Public Health Research Study by NIHR.


Subject(s)
Bed Occupancy , COVID-19 , England , Humans , Length of Stay , SARS-CoV-2
6.
Emerg Infect Dis ; 26(1): 138-142, 2020 01.
Article in English | MEDLINE | ID: mdl-31574242

ABSTRACT

Vaccines against viral infections have been proposed to reduce prescribing of antibiotics and thereby help control resistant bacterial infections. However, by combining published data sources, we predict that pediatric live attenuated influenza vaccination in England and Wales will not substantially reduce antibiotic consumption or adverse health outcomes associated with antibiotic resistance.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Influenza Vaccines/therapeutic use , Adolescent , Adult , Aged , Bacterial Infections/drug therapy , Bacterial Infections/epidemiology , Child , Child, Preschool , England/epidemiology , Humans , Infant , Infant, Newborn , Influenza, Human/prevention & control , Middle Aged , Vaccines, Attenuated/therapeutic use , Wales/epidemiology , Young Adult
7.
BMC Med ; 18(1): 348, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33203423

ABSTRACT

BACKGROUND: With a suite of promising new RSV prophylactics on the horizon, including long-acting monoclonal antibodies and new vaccines, it is likely that one or more of these will replace the current monoclonal Palivizumab programme. However, choosing the optimal intervention programme will require balancing the costs of the programmes with the health benefits accrued. METHODS: To compare the next generation of RSV prophylactics, we integrated a novel transmission model with an economic analysis. We estimated key epidemiological parameters by calibrating the model to 7 years of historical epidemiological data using a Bayesian approach. We determined the cost-effective and affordable maximum purchase price for a comprehensive suite of intervention programmes. FINDINGS: Our transmission model suggests that maternal protection of infants is seasonal, with 38-62% of infants born with protection against RSV. Our economic analysis found that to cost-effectively and affordably replace the current monoclonal antibody Palivizumab programme with long-acting monoclonal antibodies, the purchase price per dose would have to be less than around £4350 but dropping to £200 for vaccinated heightened risk infants or £90 for all infants. A seasonal maternal vaccine would have to be priced less than £85 to be cost-effective and affordable. While vaccinating pre-school and school-age children is likely not cost-effective relative to elderly vaccination programmes, vaccinating the elderly is not likely to be affordable. Conversely, vaccinating infants at 2 months seasonally would be cost-effective and affordable if priced less than £80. CONCLUSIONS: In a setting with seasonal RSV epidemiology, maternal protection conferred to newborns is also seasonal, an assumption not previously incorporated in transmission models of RSV. For a country with seasonal RSV dynamics like England, seasonal programmes rather than year-round intervention programmes are always optimal.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Cost-Benefit Analysis/methods , Respiratory Syncytial Virus Infections/therapy , Antibodies, Monoclonal/pharmacology , Female , Humans , Male , Models, Theoretical , Respiratory Syncytial Virus Infections/epidemiology
8.
BMC Med ; 18(1): 38, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32138748

ABSTRACT

BACKGROUND: Antibiotic resistance (ABR) poses a major threat to health and economic wellbeing worldwide. Reducing ABR will require government interventions to incentivise antibiotic development, prudent antibiotic use, infection control and deployment of partial substitutes such as rapid diagnostics and vaccines. The scale of such interventions needs to be calibrated to accurate and comprehensive estimates of the economic cost of ABR. METHODS: A conceptual framework for estimating costs attributable to ABR was developed based on previous literature highlighting methodological shortcomings in the field and additional deductive epidemiological and economic reasoning. The framework was supplemented by a rapid methodological review. RESULTS: The review identified 110 articles quantifying ABR costs. Most were based in high-income countries only (91/110), set in hospitals (95/110), used a healthcare provider or payer perspective (97/110), and used matched cohort approaches to compare costs of patients with antibiotic-resistant infections and antibiotic-susceptible infections (or no infection) (87/110). Better use of methods to correct biases and confounding when making this comparison is needed. Findings also need to be extended beyond their limitations in (1) time (projecting present costs into the future), (2) perspective (from the healthcare sector to entire societies and economies), (3) scope (from individuals to communities and ecosystems), and (4) space (from single sites to countries and the world). Analyses of the impact of interventions need to be extended to examine the impact of the intervention on ABR, rather than considering ABR as an exogeneous factor. CONCLUSIONS: Quantifying the economic cost of resistance will require greater rigour and innovation in the use of existing methods to design studies that accurately collect relevant outcomes and further research into new techniques for capturing broader economic outcomes.


Subject(s)
Anti-Bacterial Agents/economics , Drug Resistance, Microbial , Anti-Bacterial Agents/therapeutic use , Cohort Studies , Humans
9.
BMC Med ; 18(1): 90, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32284056

ABSTRACT

BACKGROUND: China has an aging population with an increasing number of adults aged ≥ 60 years. Influenza causes a heavy disease burden in older adults, but can be alleviated by vaccination. We assessed the cost-effectiveness of a potential government-funded seasonal influenza vaccination program in older adults in China. METHODS: We characterized the health and economic impact of a fully funded influenza vaccination program for older adults using China-specific influenza disease burden, and related cost data, etc. Using a decision tree model, we calculated the incremental costs per quality-adjusted life year (QALY) gained of vaccination from the societal perspective, at a willingness-to-pay threshold equivalent to GDP per capita (US$8840). Moreover, we estimated the threshold vaccination costs, under which the fully funded vaccination program is cost-effective using GDP per capita as the willingness-to-pay threshold. RESULTS: Compared to current self-paid vaccination, a fully funded vaccination program is expected to prevent 19,812 (95% uncertainty interval, 7150-35,783) influenza-like-illness outpatient consultations per year, 9418 (3386-17,068) severe acute respiratory infection hospitalizations per year, and 8800 (5300-11,667) respiratory excess deaths due to influenza per year, and gain 70,212 (42,106-93,635) QALYs per year. Nationally, the incremental costs per QALY gained of the vaccination program is US$4832 (3460-8307), with a 98% probability of being cost-effective. The threshold vaccination cost is US$10.19 (6.08-13.65). However, variations exist between geographical regions, with Northeast and Central China having lower probabilities of cost-effectiveness. CONCLUSIONS: Our results support the implementation of a government fully funded older adult vaccination program in China. The regional analysis provides results across settings that may be relevant to other countries with similar disease burden and economic status, especially for low- and middle-income countries where such analysis is limited.


Subject(s)
Cost-Benefit Analysis/methods , Immunization Programs/economics , Influenza, Human/economics , Vaccination/economics , Aged , Aged, 80 and over , China , Female , Humans , Male , Middle Aged , Vaccination/methods
10.
BMC Infect Dis ; 19(1): 1011, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31783803

ABSTRACT

BACKGROUND: Antibiotics remain the cornerstone of modern medicine. Yet there exists an inherent dilemma in their use: we are able to prevent harm by administering antibiotic treatment as necessary to both humans and animals, but we must be mindful of limiting the spread of resistance and safeguarding the efficacy of antibiotics for current and future generations. Policies that strike the right balance must be informed by a transparent rationale that relies on a robust evidence base. MAIN TEXT: One way to generate the evidence base needed to inform policies for managing antibiotic resistance is by using mathematical models. These models can distil the key drivers of the dynamics of resistance transmission from complex infection and evolutionary processes, as well as predict likely responses to policy change in silico. Here, we ask whether we know enough about antibiotic resistance for mathematical modelling to robustly and effectively inform policy. We consider in turn the challenges associated with capturing antibiotic resistance evolution using mathematical models, and with translating mathematical modelling evidence into policy. CONCLUSIONS: We suggest that in spite of promising advances, we lack a complete understanding of key principles. From this we advocate for priority areas of future empirical and theoretical research.


Subject(s)
Health Policy , Models, Theoretical , Anti-Bacterial Agents/pharmacology , Decision Making , Drug Resistance, Microbial/drug effects , Humans
12.
Clin Infect Dis ; 66(suppl_4): S286-S292, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29860287

ABSTRACT

Background: Control of gambiense sleeping sickness relies predominantly on passive and active screening of people, followed by treatment. Methods: Mathematical modeling explores the potential of 3 complementary interventions in high- and low-transmission settings. Results: Intervention strategies that included vector control are predicted to halt transmission most quickly. Targeted active screening, with better and more focused coverage, and enhanced passive surveillance, with improved access to diagnosis and treatment, are both estimated to avert many new infections but, when used alone, are unlikely to halt transmission before 2030 in high-risk settings. Conclusions: There was general model consensus in the ranking of the 3 complementary interventions studied, although with discrepancies between the quantitative predictions due to differing epidemiological assumptions within the models. While these predictions provide generic insights into improving control, the most effective strategy in any situation depends on the specific epidemiology in the region and the associated costs.


Subject(s)
Insect Control , Insect Vectors/parasitology , Models, Theoretical , Trypanosoma brucei gambiense/isolation & purification , Trypanosomiasis, African/prevention & control , Tsetse Flies/parasitology , Animals , Epidemiological Monitoring , Humans , Mass Screening , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/transmission
13.
BMC Med ; 16(1): 162, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30253772

ABSTRACT

BACKGROUND: Social and cultural disparities in infectious disease burden are caused by systematic differences between communities. Some differences have a direct and proportional impact on disease burden, such as health-seeking behaviour and severity of infection. Other differences-such as contact rates and susceptibility-affect the risk of transmission, where the impact on disease burden is indirect and remains unclear. Furthermore, the concomitant impact of vaccination on such inequalities is not well understood. METHODS: To quantify the role of differences in transmission on inequalities and the subsequent impact of vaccination, we developed a novel mathematical framework that integrates a mechanistic model of disease transmission with a demographic model of social structure, calibrated to epidemiologic and empirical social contact data. RESULTS: Our model suggests realistic differences in two key factors contributing to the rates of transmission-contact rate and susceptibility-between two social groups can lead to twice the risk of infection in the high-risk population group relative to the low-risk population group. The more isolated the high-risk group, the greater this disease inequality. Vaccination amplified this inequality further: equal vaccine uptake across the two population groups led to up to seven times the risk of infection in the high-risk group. To mitigate these inequalities, the high-risk population group would require disproportionately high vaccination uptake. CONCLUSION: Our results suggest that differences in contact rate and susceptibility can play an important role in explaining observed inequalities in infectious diseases. Importantly, we demonstrate that, contrary to social policy intentions, promoting an equal vaccine uptake across population groups may magnify inequalities in infectious disease risk.


Subject(s)
Communicable Diseases/epidemiology , Disease Transmission, Infectious/economics , Health Status Disparities , Models, Theoretical , Vaccination , Humans , Risk Factors , Socioeconomic Factors
14.
Am J Epidemiol ; 183(12): 1159-70, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27188951

ABSTRACT

Vaccination against pertussis has reduced the disease burden dramatically, but the most severe cases and almost all fatalities occur in infants too young to be vaccinated. Recent epidemiologic evidence suggests that targeted vaccination of mothers during pregnancy can reduce pertussis incidence in their infants. To evaluate the cost-effectiveness of antepartum maternal vaccination in the United States, we created an age-stratified transmission model, incorporating empirical data on US contact patterns and explicitly modeling parent-infant exposure. Antepartum maternal vaccination incurs costs of $114,000 (95% prediction interval: 82,000, 183,000) per quality-adjusted life-year, in comparison with the strategy of no adult vaccination, and is cost-effective in the United States according to World Health Organization criteria. By contrast, vaccinating a second parent is not cost-effective, and vaccination of either parent postpartum is strongly dominated by antepartum maternal vaccination. Nonetheless, postpartum vaccination of mothers who were not vaccinated antepartum improves upon the current recommendation of untargeted adult vaccination. Additionally, the temporary direct protection of the infant due to maternal antibody transfer has efficacy for infants comparable to that conferred to toddlers by the full primary vaccination series. Efficient protection against pertussis for infants begins before birth. We highly recommend antepartum vaccination for as many US mothers as possible.


Subject(s)
Diphtheria-Tetanus-acellular Pertussis Vaccines/administration & dosage , Diphtheria-Tetanus-acellular Pertussis Vaccines/economics , Whooping Cough/prevention & control , Adult , Age Factors , Cost-Benefit Analysis , Diphtheria-Tetanus-acellular Pertussis Vaccines/immunology , Female , Humans , Immunization Schedule , Infant , Infant, Newborn , Models, Econometric , Pregnancy , Quality-Adjusted Life Years , United States/epidemiology
15.
Value Health ; 19(6): 811-819, 2016.
Article in English | MEDLINE | ID: mdl-27712709

ABSTRACT

BACKGROUND: Vaccination against rotavirus has shown great potential for reducing the primary cause of severe childhood gastroenteritis. Previous economic evaluations of rotavirus vaccination in France have not modeled the potential impact of vaccines on disease burden via reduced transmission. OBJECTIVE: To determine the cost-effectiveness of the introduction of pentavalent rotavirus vaccination into the French infant vaccination schedule. METHODS: We developed an age-structured model of rotavirus transmission calibrated to 6 years of French gastroenteritis incidence and vaccine clinical trial data. We evaluated the cost-effectiveness of pentavalent rotavirus vaccination considering that 75% of infants would receive the three-dose vaccine course. RESULTS: Our model predicts that rotavirus vaccination will decrease rotavirus gastroenteritis incidence and associated clinical outcomes in vaccinated and unvaccinated individuals, delay the seasonal peak of infection, and increase the age of infection. From the societal perspective, our base-case scenario predicts that vaccination coverage would be cost-effective at €115 or €135 per vaccine course at €28,500 and €39,500/quality-adjusted life-year (QALY) gained, respectively, and suggests that almost 95% of the financial benefits will be recouped within the first 5 years following vaccination implementation. From the third-party payer perspective, incremental cost-effectiveness ratios ranged from €12,500 to €20,000/QALY, respectively. Our uncertainty analysis suggests that findings were sensitive to various assumptions including the number of hospitalizations, outpatient visits, and the extent of QALY losses per rotavirus episode. CONCLUSIONS: Introducing pentavalent rotavirus vaccination into the French infant vaccination schedule would significantly reduce the burden of rotavirus disease in children, and could be cost-effective under plausible conditions.


Subject(s)
Cost-Benefit Analysis , Models, Theoretical , Rotavirus Infections/prevention & control , Rotavirus Vaccines/economics , Rotavirus Vaccines/therapeutic use , Vaccination/economics , Adolescent , Adult , Aged , Child , Child, Preschool , France , Humans , Immunization Schedule , Infant , Infant, Newborn , Middle Aged , Quality of Life , Young Adult
16.
Proc Natl Acad Sci U S A ; 110(19): 7952-7, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23589884

ABSTRACT

Epidemiological studies from sub-Saharan Africa show that genital infection with Schistosoma haematobium [corrected] may increase the risk for HIV infection in young women. Therefore, preventing schistosomiasis has the potential to reduce HIV transmission in sub-Saharan Africa. We developed a transmission model of female genital schistosomiasis and HIV infections that we fit to epidemiological data of HIV and female genital schistosomiasis prevalence and coinfection in rural Zimbabwe. We used the model to evaluate the cost-effectiveness of a multifaceted community-based intervention for preventing schistosomiasis and, consequently, HIV infections in rural Zimbabwe, from the perspective of a health payer. The community-based intervention combined provision of clean water, sanitation, and health education (WSH) with administration of praziquantel to school-aged children. Considering variation in efficacy between 10% and 70% of WSH for reducing S. haematobium [corrected] transmission, our model predicted that community-based intervention is likely to be cost-effective in Zimbabwe at an aggregated WSH cost corresponding to US $725-$1,000 per individual over a 20-y intervention period. These costs compare favorably with empirical measures of WSH provision in developing countries, indicating that integrated community-based intervention for reducing the transmission of S. haematobium [corrected] is an economically attractive strategy for reducing schistosomiasis and HIV transmission in sub-Saharan Africa that would have a powerful impact on averting infections and saving lives.


Subject(s)
Communicable Disease Control/economics , HIV Infections/prevention & control , HIV Infections/transmission , Infectious Disease Medicine/economics , Schistosomiasis/prevention & control , Schistosomiasis/transmission , Animals , Child , Community Health Services/economics , Community Health Services/organization & administration , Cost-Benefit Analysis , Female , Health Care Costs , Health Promotion , Humans , Male , Models, Economic , Outcome Assessment, Health Care , Prevalence , Probability , Zimbabwe
18.
Lancet Reg Health Eur ; 38: 100829, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476752

ABSTRACT

Background: Two new products for preventing Respiratory Syncytial Virus (RSV) in young children have been licensed: a single-dose long-acting monoclonal antibody (la-mAB) and a maternal vaccine (MV). To facilitate the selection of new RSV intervention programmes for large-scale implementation, this study provides an assessment to compare the costs of potential programmes with the health benefits accrued. Methods: Using an existing dynamic transmission model, we compared maternal vaccination to la-mAB therapy against RSV in England and Wales by calculating the impact and cost-effectiveness. We calibrated a statistical model to the efficacy trial data to accurately capture their immune waning and estimated the impact of seasonal and year-round programmes for la-mAB and MV programmes. Using these impact estimates, we identified the most cost-effective programme across pricing and delivery cost assumptions. Findings: For infants under six months old in England and Wales, a year-round MV programme with 60% coverage would avert 32% (95% CrI 22-41%) of RSV hospital admissions and a year-round la-mAB programme with 90% coverage would avert 57% (95% CrI 41-69%). The MV programme has additional health benefits for pregnant women, which account for 20% of the population-level health burden averted. A seasonal la-mAB programme could be cost-effective for up to £84 for purchasing and administration (CCPA) and a seasonal MV could be cost-effective for up to £80 CCPA. Interpretation: This modelling and cost-effectiveness analysis has shown that both the long-acting monoclonal antibodies and the maternal vaccine could substantially reduce the burden of RSV disease in the infant population. Our analysis has informed JCVI's recommendations for an RSV immunisation programme to protect newborns and infants. Funding: National Institute for Health Research.

19.
Lancet Microbe ; 4(2): e102-e112, 2023 02.
Article in English | MEDLINE | ID: mdl-36642083

ABSTRACT

BACKGROUND: HIV-1 infections initiated by multiple founder variants are characterised by a higher viral load and a worse clinical prognosis than those initiated with single founder variants, yet little is known about the routes of exposure through which transmission of multiple founder variants is most probable. Here we used individual patient data to calculate the probability of multiple founders stratified by route of HIV exposure and study methodology. METHODS: We conducted a systematic review and meta-analysis of studies that estimated founder variant multiplicity in HIV-1 infection, searching MEDLINE, Embase, and Global Health databases for papers published between Jan 1, 1990, and Sept 14, 2020. Eligible studies must have reported original estimates of founder variant multiplicity in people with acute or early HIV-1 infections, have clearly detailed the methods used, and reported the route of exposure. Studies were excluded if they reported data concerning people living with HIV-1 who had known or suspected superinfection, who were documented as having received pre-exposure prophylaxis, or if the transmitting partner was known to be receiving antiretroviral treatment. Individual patient data were collated from all studies, with authors contacted if these data were not publicly available. We applied logistic meta-regression to these data to estimate the probability that an HIV infection is initiated by multiple founder variants. We calculated a pooled estimate using a random effects model, subsequently stratifying this estimate across exposure routes in a univariable analysis. We then extended our model to adjust for different study methods in a multivariable analysis, recalculating estimates across the exposure routes. This study is registered with PROSPERO, CRD42020202672. FINDINGS: We included 70 publications in our analysis, comprising 1657 individual patients. Our pooled estimate of the probability that an infection is initiated by multiple founder variants was 0·25 (95% CI 0·21-0·29), with moderate heterogeneity (Q=132·3, p<0·0001, I2=64·2%). Our multivariable analysis uncovered differences in the probability of multiple variant infection by exposure route. Relative to a baseline of male-to-female transmission, the predicted probability for female-to-male multiple variant transmission was significantly lower at 0·13 (95% CI 0·08-0·20), and the probabilities were significantly higher for transmissions in people who inject drugs (0·37 [0·24-0·53]) and men who have sex with men (0·30 [0·33-0·40]). There was no significant difference in the probability of multiple variant transmission between male-to-female transmission (0·21 [0·14-0·31]), post-partum transmission (0·18 [0·03-0·57]), pre-partum transmission (0·17 [0·08-0·33]), and intra-partum transmission (0·27 [0·14-0·45]). INTERPRETATION: We identified that transmissions in people who inject drugs and men who have sex with men are significantly more likely to result in an infection initiated by multiple founder variants, and female-to-male infections are significantly less probable. Quantifying how the routes of HIV infection affect the transmission of multiple variants allows us to better understand how the evolution and epidemiology of HIV-1 determine clinical outcomes. FUNDING: Medical Research Council Precision Medicine Doctoral Training Programme and a European Research Council Starting Grant.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Sexual and Gender Minorities , Humans , Male , Female , HIV Infections/epidemiology , HIV Infections/drug therapy , HIV-1/genetics , Homosexuality, Male , Anti-HIV Agents/therapeutic use , HIV Seropositivity/epidemiology , HIV Seropositivity/drug therapy
20.
Commun Med (Lond) ; 3(1): 97, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443390

ABSTRACT

BACKGROUND: The emergence of highly transmissible SARS-CoV-2 variants has led to surges in cases and the need for global genomic surveillance. While some variants rapidly spread worldwide, other variants only persist nationally. There is a need for more fine-scale analysis to understand transmission dynamics at a country scale. For instance, the Mu variant of interest, also known as lineage B.1.621, was first detected in Colombia and was responsible for a large local wave but only a few sporadic cases elsewhere. METHODS: To better understand the epidemiology of SARS-Cov-2 variants in Colombia, we used 14,049 complete SARS-CoV-2 genomes from the 32 states of Colombia. We performed Bayesian phylodynamic analyses to estimate the time of variants' introduction, their respective effective reproductive number, and effective population size, and the impact of disease control measures. RESULTS: Here, we detect a total of 188 SARS-CoV-2 Pango lineages circulating in Colombia since the pandemic's start. We show that the effective reproduction number oscillated drastically throughout the first two years of the pandemic, with Mu showing the highest transmissibility (Re and growth rate estimation). CONCLUSIONS: Our results reinforce that genomic surveillance programs are essential for countries to make evidence-driven interventions toward the emergence and circulation of novel SARS-CoV-2 variants.


Colombia reported its first COVID-19 case on 6th March 2020. By April 2022, the country had reported over 6 million infections and over 135,000 deaths. Here, we aim to understand how SARS-CoV-2, the virus that causes COVID-19, spread through Colombia over this time and how the predominant version of the virus (variant) changed over time. We found that there were multiple introductions of different variants from other countries into Colombia during the first two years of the pandemic. The Gamma variant was dominant earlier in 2021 but was replaced by the Delta variant. The Mu variant had the highest potential to be transmitted. Our findings provide valuable insights into the pandemic in Colombia and highlight the importance of continued surveillance of the virus to guide the public health response.

SELECTION OF CITATIONS
SEARCH DETAIL