Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 391(14): 1302-1312, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39383459

ABSTRACT

BACKGROUND: Cerebral adrenoleukodystrophy is a severe form of X-linked adrenoleukodystrophy characterized by white-matter disease, loss of neurologic function, and early death. Elivaldogene autotemcel (eli-cel) gene therapy, which consists of autologous CD34+ cells transduced with Lenti-D lentiviral vector containing ABCD1 complementary DNA, is being tested in persons with cerebral adrenoleukodystrophy. METHODS: In a phase 2-3 study, we evaluated the efficacy and safety of eli-cel therapy in boys with early-stage cerebral adrenoleukodystrophy and evidence of active inflammation on magnetic resonance imaging (MRI). The primary efficacy end point was survival without any of six major functional disabilities at month 24. The secondary end points included overall survival at month 24 and the change from baseline to month 24 in the total neurologic function score. RESULTS: A total of 32 patients received eli-cel; 29 patients (91%) completed the 24-month study and are being monitored in the long-term follow-up study. At month 24, none of these 29 patients had major functional disabilities; overall survival was 94%. At the most recent assessment (median follow-up, 6 years), the neurologic function score was stable as compared with the baseline score in 30 of 32 patients (94%); 26 patients (81%) had no major functional disabilities. Four patients had adverse events that were directly related to eli-cel. Myelodysplastic syndrome (MDS) with excess blasts developed in 1 patient at month 92; the patient underwent allogeneic hematopoietic stem-cell transplantation and did not have MDS at the most recent follow-up. CONCLUSIONS: At a median follow-up of 6 years after lentiviral gene therapy, most patients with early cerebral adrenoleukodystrophy and MRI abnormalities had no major functional disabilities. However, insertional oncogenesis is an ongoing risk associated with the integration of viral vectors. (Funded by Bluebird Bio; ALD-102 and LTF-304 ClinicalTrials.gov numbers NCT01896102 and NCT02698579, respectively.).


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1 , Adrenoleukodystrophy , Genetic Therapy , Genetic Vectors , Lentivirus , Adolescent , Child , Child, Preschool , Humans , Male , Adrenoleukodystrophy/diagnosis , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/mortality , Adrenoleukodystrophy/therapy , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Brain/diagnostic imaging , Brain/pathology , Genetic Therapy/adverse effects , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/adverse effects , Hematopoietic Stem Cell Transplantation , Lentivirus/genetics , Magnetic Resonance Imaging , Follow-Up Studies , Treatment Outcome , Myelodysplastic Syndromes/epidemiology , Myelodysplastic Syndromes/genetics
2.
Neurogenetics ; 21(1): 29-37, 2020 01.
Article in English | MEDLINE | ID: mdl-31655922

ABSTRACT

Giant axonal neuropathy (GAN) is an autosomal recessive disease caused by mutations in the GAN gene encoding gigaxonin. Patients develop a progressive sensorimotor neuropathy affecting peripheral nervous system (PNS) and central nervous system (CNS). Methods: In this multicenter observational retrospective study, we recorded French patients with GAN mutations, and 10 patients were identified. Mean age of patients was 9.7 years (2-18), eight patients were female (80%), and all patients met infant developmental milestones and had a family history of consanguinity. Mean age at disease onset was 3.3 years (1-5), and progressive cerebellar ataxia and distal motor weakness were the initial symptoms in all cases. Proximal motor weakness and bulbar symptoms appeared at a mean age of 12 years (8-14), and patients used a wheelchair at a mean age of 16 years (14-18). One patient died at age 18 years from aspiration pneumonia. In all cases, nerve conduction studies showed a mixed demyelinating and axonal sensorimotor neuropathy and MRI showed brain and cerebellum white matter abnormalities. Polyneuropathy and encephalopathy both aggravated during the course of the disease. Patients also showed a variety of associated findings, including curly hair (100% of cases), pes cavus (80%), ophthalmic abnormalities (30%), and scoliosis (30%). Five new GAN mutations were found, including the first synonymous mutation and a large intragenic deletion. Our findings expand the genotypic spectrum of GAN mutations, with relevant implications for molecular analysis of this gene, and confirm that GAN is an age-related progressive neurodegenerative disease involving PNS and CNS.


Subject(s)
Cytoskeletal Proteins/genetics , Giant Axonal Neuropathy/genetics , Mutation , Adolescent , Brain/pathology , Child , Child, Preschool , Female , Giant Axonal Neuropathy/epidemiology , Giant Axonal Neuropathy/pathology , Giant Axonal Neuropathy/physiopathology , Humans , Male , Retrospective Studies
3.
N Engl J Med ; 377(17): 1630-1638, 2017 10 26.
Article in English | MEDLINE | ID: mdl-28976817

ABSTRACT

BACKGROUND: In X-linked adrenoleukodystrophy, mutations in ABCD1 lead to loss of function of the ALD protein. Cerebral adrenoleukodystrophy is characterized by demyelination and neurodegeneration. Disease progression, which leads to loss of neurologic function and death, can be halted only with allogeneic hematopoietic stem-cell transplantation. METHODS: We enrolled boys with cerebral adrenoleukodystrophy in a single-group, open-label, phase 2-3 safety and efficacy study. Patients were required to have early-stage disease and gadolinium enhancement on magnetic resonance imaging (MRI) at screening. The investigational therapy involved infusion of autologous CD34+ cells transduced with the elivaldogene tavalentivec (Lenti-D) lentiviral vector. In this interim analysis, patients were assessed for the occurrence of graft-versus-host disease, death, and major functional disabilities, as well as changes in neurologic function and in the extent of lesions on MRI. The primary end point was being alive and having no major functional disability at 24 months after infusion. RESULTS: A total of 17 boys received Lenti-D gene therapy. At the time of the interim analysis, the median follow-up was 29.4 months (range, 21.6 to 42.0). All the patients had gene-marked cells after engraftment, with no evidence of preferential integration near known oncogenes or clonal outgrowth. Measurable ALD protein was observed in all the patients. No treatment-related death or graft-versus-host disease had been reported; 15 of the 17 patients (88%) were alive and free of major functional disability, with minimal clinical symptoms. One patient, who had had rapid neurologic deterioration, had died from disease progression. Another patient, who had had evidence of disease progression on MRI, had withdrawn from the study to undergo allogeneic stem-cell transplantation and later died from transplantation-related complications. CONCLUSIONS: Early results of this study suggest that Lenti-D gene therapy may be a safe and effective alternative to allogeneic stem-cell transplantation in boys with early-stage cerebral adrenoleukodystrophy. Additional follow-up is needed to fully assess the duration of response and long-term safety. (Funded by Bluebird Bio and others; STARBEAM ClinicalTrials.gov number, NCT01896102 ; ClinicalTrialsRegister.eu number, 2011-001953-10 .).


Subject(s)
ATP-Binding Cassette Transporters/therapeutic use , Adrenoleukodystrophy/therapy , Genetic Therapy , Genetic Vectors , Hematopoietic Stem Cell Transplantation , Lentivirus , ATP Binding Cassette Transporter, Subfamily D, Member 1 , ATP-Binding Cassette Transporters/genetics , Adolescent , Adrenoleukodystrophy/genetics , Antigens, CD34/blood , Biomarkers/blood , Child , Combined Modality Therapy , Genetic Vectors/blood , Granulocyte Colony-Stimulating Factor/therapeutic use , Hematopoietic Stem Cells/immunology , Humans , Male , Polymerase Chain Reaction , Transplantation, Autologous
4.
Biol Blood Marrow Transplant ; 25(3): 538-548, 2019 03.
Article in English | MEDLINE | ID: mdl-30292747

ABSTRACT

Cerebral adrenoleukodystrophy (CALD) is a rapidly progressing, often fatal neurodegenerative disease caused by mutations in the ABCD1 gene, resulting in deficiency of ALD protein. Clinical benefit has been reported following allogeneic hematopoietic stem cell transplantation (HSCT). We conducted a large multicenter retrospective chart review to characterize the natural history of CALD, to describe outcomes after HSCT, and to identify predictors of treatment outcomes. Major functional disabilities (MFDs) were identified as having the most significant impact on patients' abilities to function independently and were used to assess HSCT outcome. Neurologic function score (NFS) and Loes magnetic resonance imaging score were assessed. Data were collected on 72 patients with CALD who did not undergo HSCT (untreated cohort) and on 65 patients who underwent transplantation (HSCT cohort) at 5 clinical sites. Kaplan-Meier (KM) estimates of 5-year overall survival (OS) from the time of CALD diagnosis were 55% (95% confidence interval [CI], 42.2% to 65.7%) for the untreated cohort and 78% (95% CI, 64% to 86.6%) for the HSCT cohort overall (P = .01). KM estimates of 2-year MFD-free survival for patients with gadolinium-enhanced lesions (GdE+) were 29% (95% CI, 11.7% to 48.2%) for untreated patients (n = 21). For patients who underwent HSCT with GdE+ at baseline, with an NFS ≤1 and Loes score of 0.5 to ≤9 (n = 27), the 2-year MFD-free survival was 84% (95% CI, 62.3% to 93.6%). Mortality rates post-HSCT were 8% (5 of 65) at 100days and 18% (12 of 65) at 1 year, with disease progression (44%; 7 of 16) and infection (31%; 5 of 16) listed as the most common causes of death. Adverse events post-HSCT included infection (29%; 19 of 65), acute grade II-IV graft-versus-host disease (GVHD) (31%; 18 of 58), and chronic GVHD (7%; 4 of 58). Eighteen percent of the patients (12 of 65) experienced engraftment failure after their first HSCT. Positive predictors of OS in the HSCT cohort may include donor-recipient HLA matching and lack of GVHD, and early disease treatment was predictive of MFD-free survival. GdE+ status is a strong predictor of disease progression in untreated patients. This study confirms HSCT as an effective treatment for CALD when performed early. We propose survival without MFDs as a relevant treatment goal, rather than solely assessing OS as an indicator of treatment success.


Subject(s)
Adrenoleukodystrophy/therapy , Hematopoietic Stem Cell Transplantation/methods , Adolescent , Adrenoleukodystrophy/complications , Adrenoleukodystrophy/mortality , Case-Control Studies , Child , Disease Progression , Graft vs Host Disease/etiology , Humans , Infections/etiology , Male , Prognosis , Retrospective Studies , Survival Analysis , Time-to-Treatment , Young Adult
5.
Brain ; 141(4): 979-988, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29444212

ABSTRACT

See Meschia (doi:10.1093/brain/awy066) for a scientific commentary on this article.Vein of Galen aneurysmal malformation is a congenital anomaly of the cerebral vasculature representing 30% of all paediatric vascular malformations. We conducted whole exome sequencing in 19 unrelated patients presenting this malformation and subsequently screened candidate genes in a cohort of 32 additional patients using either targeted exome or Sanger sequencing. In a cohort of 51 patients, we found five affected individuals with heterozygous mutations in EPHB4 including de novo frameshift (p.His191Alafs*32) or inherited deleterious splice or missense mutations predicted to be pathogenic by in silico tools. Knockdown of ephb4 in zebrafish embryos leads to specific anomalies of dorsal cranial vessels including the dorsal longitudinal vein, which is the orthologue of the median prosencephalic vein and the embryonic precursor of the vein of Galen. This model allowed us to investigate EPHB4 loss-of-function mutations in this disease by the ability to rescue the brain vascular defect in knockdown zebrafish co-injected with wild-type, but not truncated EPHB4, mimicking the p.His191Alafs mutation. Our data showed that in both species, loss of function mutations of EPHB4 result in specific and similar brain vascular development anomalies. Recently, EPHB4 germline mutations have been reported in non-immune hydrops fetalis and in cutaneous capillary malformation-arteriovenous malformation. Here, we show that EPHB4 mutations are also responsible for vein of Galen aneurysmal malformation, indicating that heterozygous germline mutations of EPHB4 result in a large clinical spectrum. The identification of EPHB4 pathogenic mutations in patients presenting capillary malformation or vein of Galen aneurysmal malformation should lead to careful follow-up of pregnancy of carriers for early detection of anomaly of the cerebral vasculature in order to propose optimal neonatal care. Endovascular embolization indeed greatly improved the prognosis of patients.


Subject(s)
Mutation/genetics , Receptor, EphB4/genetics , Vein of Galen Malformations/genetics , Angiography, Digital Subtraction , Animals , Animals, Genetically Modified , Cohort Studies , Cranial Nerves/abnormalities , DNA Mutational Analysis , Disease Models, Animal , Embryo, Nonmammalian , Female , Gestational Age , Humans , Magnetic Resonance Imaging , Male , Oligodeoxyribonucleotides, Antisense/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, EphB4/metabolism , Vein of Galen Malformations/diagnostic imaging , Exome Sequencing , Zebrafish
6.
Brain ; 140(4): 953-966, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28375456

ABSTRACT

The adult cerebral inflammatory form of X-linked adrenoleukodystrophy is a rapidly progressive neurodegenerative disease, as devastating as childhood cerebral adrenoleukodystrophy. Allogeneic haematopoietic stem cell transplantation has been demonstrated to provide long-term neurological benefits for boys with the childhood cerebral form, but results in adults are sparse and inconclusive. We analysed data from 14 adult males with adult cerebral adrenoleukodystrophy treated with allogeneic haematopoietic stem cell transplantation on a compassionate basis in four European centres. All presented with cerebral demyelinating lesions and gadolinium enhancement. Median age at diagnosis of adult cerebral adrenoleukodystrophy was 33 years (range 21-48 years). In addition to cerebral inflammation, five patients had established severe motor disability from adrenomyeloneuropathy affecting only the spinal cord and peripheral nerves (Expanded Disability Status Scale score ≥ 6). Eight patients survived (estimated survival 57 ± 13%) with a median follow-up of 65 months (minimum 38 months). Death was directly transplant-/infection-related (n = 3), due to primary disease progression in advanced adult cerebral adrenoleukodystrophy (n = 1), or secondary disease progression (n = 2) after transient multi-organ failure or non-engraftment. Specific complications during stem cell transplantation included deterioration of motor and bladder functions (n = 12) as well as behavioural changes (n = 8). Arrest of progressive cerebral demyelination and prevention of severe loss of neurocognition was achieved in all eight survivors, but deterioration of motor function occurred in the majority (n = 5). Limited motor dysfunction (Expanded Disability Status Scale score < 6) prior to transplantation was associated with significantly improved survival [78 ± 14% (n = 9) versus 20 ± 18%(n = 5); P < 0.05] and maintenance of ambulation (Expanded Disability Status Scale score < 7) post-transplant (78% versus 0%; P = 0.021). In contrast, bilateral involvement of the internal capsule on brain MRI was associated with poorer survival [20 ± 18% (n = 5) versus 78 ± 14% (n = 9); P < 0.05]. This study is the first to support the feasibility, complications and potential long-term neurological benefit of allogeneic haematopoietic stem cell transplantation in adult cerebral adrenoleukodystrophy. Further studies are warranted to attempt to improve outcomes through patient selection and optimization of transplantation protocols.


Subject(s)
Adrenoleukodystrophy/therapy , Disease Progression , Hematopoietic Stem Cell Transplantation/methods , Outcome Assessment, Health Care , Postoperative Complications/etiology , Severity of Illness Index , Adrenoleukodystrophy/mortality , Adrenoleukodystrophy/pathology , Adrenoleukodystrophy/physiopathology , Adult , Aftercare , Feasibility Studies , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/mortality , Humans , Male , Middle Aged , Postoperative Complications/mortality , Postoperative Complications/physiopathology , Young Adult
7.
Biochim Biophys Acta ; 1862(10): 1861-70, 2016 10.
Article in English | MEDLINE | ID: mdl-27425035

ABSTRACT

X-linked adrenoleukodystrophy (ALD) is a severe neurodegenerative disorder caused by the accumulation of very long-chain fatty acids (VLCFA) due to mutations in the ABCD1 gene. The phenotypic spectrum ranges from a fatal cerebral demyelinating disease in childhood (cerebral ALD) to a progressive myelopathy without cerebral involvement in adulthood (adrenomyeloneuropathy). Because ABCD1 mutations have no predictive value with respect to clinical outcome a role for modifier genes was postulated. We report that the CYP4F2 polymorphism rs2108622 increases the risk of developing cerebral ALD in Caucasian patients. The rs2108622 polymorphism (c.1297G>A) results in an amino acid substitution valine for methionine at position 433 (p.V433M). Using cellular models of VLCFA accumulation, we show that p.V433M decreases the conversion of VLCFA into very long-chain dicarboxylic acids by ω-oxidation, a potential escape route for the deficient peroxisomal ß-oxidation of VLCFA in ALD. Although p.V433M does not affect the catalytic activity of CYP4F2 it reduces CYP4F2 protein levels markedly. These findings open perspectives for therapeutic interventions in a disease with currently limited treatment options.


Subject(s)
Adrenoleukodystrophy , Cytochrome P450 Family 4 , Fatty Acids , Polymorphism, Genetic , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily D, Member 1/metabolism , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/metabolism , Cell Line , Cytochrome P450 Family 4/genetics , Cytochrome P450 Family 4/metabolism , Fatty Acids/genetics , Fatty Acids/metabolism , Humans , Male , Middle Aged , Mutation
8.
Brain ; 139(Pt 6): 1735-46, 2016 06.
Article in English | MEDLINE | ID: mdl-27068048

ABSTRACT

Adrenomyeloneuropathy is the late-onset form of X-linked adrenoleukodystrophy, and is considered the most frequent metabolic hereditary spastic paraplegia. In adrenomyeloneuropathy the spinal cord is the main site of pathology. Differently from quantitative magnetic resonance imaging of the brain, little is known about the feasibility and utility of advanced neuroimaging in quantifying the spinal cord abnormalities in hereditary diseases. Moreover, little is known about the subtle pathological changes that can characterize the brain of adrenomyeloneuropathy subjects in the early stages of the disease. We performed a cross-sectional study on 13 patients with adrenomyeloneuropathy and 12 age-matched healthy control subjects who underwent quantitative magnetic resonance imaging to assess the structural changes of the upper spinal cord and brain. Total cord areas from C2-3 to T2-3 level were measured, and diffusion tensor imaging metrics, i.e. fractional anisotropy, mean, axial and radial diffusivity values were calculated in both grey and white matter of spinal cord. In the brain, grey matter regions were parcellated with Freesurfer and average volume and thickness, and mean diffusivity and fractional anisotropy from co-registered diffusion maps were calculated in each region. Brain white matter diffusion tensor imaging metrics were assessed using whole-brain tract-based spatial statistics, and tractography-based analysis on corticospinal tracts. Correlations among clinical, structural and diffusion tensor imaging measures were calculated. In patients total cord area was reduced by 26.3% to 40.2% at all tested levels (P < 0.0001). A mean 16% reduction of spinal cord white matter fractional anisotropy (P ≤ 0.0003) with a concomitant 9.7% axial diffusivity reduction (P < 0.009) and 34.5% radial diffusivity increase (P < 0.009) was observed, suggesting co-presence of axonal degeneration and demyelination. Brain tract-based spatial statistics showed a marked reduction of fractional anisotropy, increase of radial diffusivity (P < 0.001) and no axial diffusivity changes in several white matter tracts, including corticospinal tracts and optic radiations, indicating predominant demyelination. Tractography-based analysis confirmed the results within corticospinal tracts. No significant cortical volume and thickness reduction or grey matter diffusion tensor imaging values alterations were observed in patients. A correlation between radial diffusivity and disease duration along the corticospinal tracts (r = 0.806, P < 0.01) was found. In conclusion, in adrenomyeloneuropathy patients quantitative magnetic resonance imaging-derived measures identify and quantify structural changes in the upper spinal cord and brain which agree with the expected histopathology, and suggest that the disease could be primarily caused by a demyelination rather than a primitive axonal damage. The results of this study may also encourage the employment of quantitative magnetic resonance imaging in other hereditary diseases with spinal cord involvement.


Subject(s)
Adrenoleukodystrophy/diagnostic imaging , Adrenoleukodystrophy/pathology , Brain/pathology , Spinal Cord/pathology , Adult , Anisotropy , Case-Control Studies , Cross-Sectional Studies , Diffusion Tensor Imaging/methods , Diffusion Tensor Imaging/statistics & numerical data , Gray Matter/pathology , Humans , Male , Neuroimaging/statistics & numerical data , White Matter/pathology , Young Adult
9.
Brain ; 139(Pt 3): 953-70, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26912634

ABSTRACT

Huntington's disease is an autosomal dominant neurodegenerative disease caused by abnormal polyglutamine expansion in huntingtin (Exp-HTT) leading to degeneration of striatal neurons. Altered brain cholesterol homeostasis has been implicated in Huntington's disease, with increased accumulation of cholesterol in striatal neurons yet reduced levels of cholesterol metabolic precursors. To elucidate these two seemingly opposing dysregulations, we investigated the expression of cholesterol 24-hydroxylase (CYP46A1), the neuronal-specific and rate-limiting enzyme for cholesterol conversion to 24S-hydroxycholesterol (24S-OHC). CYP46A1 protein levels were decreased in the putamen, but not cerebral cortex samples, of post-mortem Huntington's disease patients when compared to controls. Cyp46A1 mRNA and CYP46A1 protein levels were also decreased in the striatum of the R6/2 Huntington's disease mouse model and in SThdhQ111 cell lines. In vivo, in a wild-type context, knocking down CYP46A1 expression in the striatum, via an adeno-associated virus-mediated delivery of selective shCYP46A1, reproduced the Huntington's disease phenotype, with spontaneous striatal neuron degeneration and motor deficits, as assessed by rotarod. In vitro, CYP46A1 restoration protected SThdhQ111 and Exp-HTT-expressing striatal neurons in culture from cell death. In the R6/2 Huntington's disease mouse model, adeno-associated virus-mediated delivery of CYP46A1 into the striatum decreased neuronal atrophy, decreased the number, intensity level and size of Exp-HTT aggregates and improved motor deficits, as assessed by rotarod and clasping behavioural tests. Adeno-associated virus-CYP46A1 infection in R6/2 mice also restored levels of cholesterol and lanosterol and increased levels of desmosterol. In vitro, lanosterol and desmosterol were found to protect striatal neurons expressing Exp-HTT from death. We conclude that restoring CYP46A1 activity in the striatum promises a new therapeutic approach in Huntington's disease.


Subject(s)
Cholesterol/metabolism , Huntington Disease/enzymology , Huntington Disease/prevention & control , Steroid Hydroxylases/biosynthesis , Aged , Aged, 80 and over , Animals , Cells, Cultured , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cholesterol 24-Hydroxylase , Female , Humans , Huntington Disease/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Middle Aged
10.
J Neurosci Res ; 94(11): 1169-79, 2016 11.
Article in English | MEDLINE | ID: mdl-27638601

ABSTRACT

Leukodystrophies (LDs) are rare, often devastating genetic disorders with neurologic symptoms. There are currently no disease-specific therapeutic approaches for these diseases. In this review we use metachromatic leukodystrophy as an example to outline in the brief the therapeutic approaches to MLD that have been tested in animal models and in clinical trials, such as enzyme-replacement therapy, bone marrow/umbilical cord blood transplants, ex vivo transplantation of genetically modified hematopoietic stem cells, and gene therapy. These studies suggest that to be successful the ideal therapy for MLD must provide persistent and high level expression of the deficient gene, arylsulfatase A in the CNS. Gene therapy using adeno-associated viruses is therefore the ideal choice for clinical development as it provides the best balance of potential for efficacy with reduced safety risk. Here we have summarized the published preclinical data from our group and from others that support the use of a gene therapy with AAVrh.10 serotype for clinical development as a treatment for MLD, and as an example of the potential of gene therapy for LDs especially for Krabbe disease, which is the focus of this special issue. © 2016 Wiley Periodicals, Inc.


Subject(s)
Genetic Therapy/methods , Leukodystrophy, Metachromatic/therapy , Animals , Cerebroside-Sulfatase/deficiency , Cerebroside-Sulfatase/genetics , Disease Models, Animal , Humans , Leukodystrophy, Metachromatic/genetics
11.
Brain ; 138(Pt 8): 2383-98, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26141492

ABSTRACT

Abnormalities in neuronal cholesterol homeostasis have been suspected or observed in several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. However, it has not been demonstrated whether an increased abundance of cholesterol in neurons in vivo contributes to neurodegeneration. To address this issue, we used RNA interference methodology to inhibit the expression of cholesterol 24-hydroxylase, encoded by the Cyp46a1 gene, in the hippocampus of normal mice. Cholesterol 24-hydroxylase controls cholesterol efflux from the brain and thereby plays a major role in regulating brain cholesterol homeostasis. We used an adeno-associated virus vector encoding short hairpin RNA directed against the mouse Cyp46a1 mRNA to decrease the expression of the Cyp46a1 gene in hippocampal neurons of normal mice. This increased the cholesterol concentration in neurons, followed by cognitive deficits and hippocampal atrophy due to apoptotic neuronal death. Prior to neuronal death, the recruitment of the amyloid protein precursor to lipid rafts was enhanced leading to the production of ß-C-terminal fragment and amyloid-ß peptides. Abnormal phosphorylation of tau and endoplasmic reticulum stress were also observed. In the APP23 mouse model of Alzheimer's disease, the abundance of amyloid-ß peptides increased following inhibition of Cyp46a1 expression, and neuronal death was more widespread than in normal mice. Altogether, these results suggest that increased amounts of neuronal cholesterol within the brain may contribute to inducing and/or aggravating Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Cholesterol/metabolism , Enzyme Inhibitors/pharmacology , Steroid Hydroxylases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cholesterol 24-Hydroxylase , Female , Homeostasis/physiology , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism
12.
Brain ; 138(Pt 2): 284-92, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25527826

ABSTRACT

Inherited white matter diseases are rare and heterogeneous disorders usually encountered in infancy. Adult-onset forms are increasingly recognized. Our objectives were to determine relative frequencies of genetic leukoencephalopathies in a cohort of adult-onset patients and to evaluate the effectiveness of a systematic diagnostic approach. Inclusion criteria of this retrospective study were: (i) symmetrical involvement of white matter on the first available brain MRI; (ii) age of onset above 16 years. Patients with acquired diseases were excluded. Magnetic resonance imaging analysis identified three groups (vascular, cavitary and non-vascular/non-cavitary) in which distinct genetic and/or biochemical testing were realized. One hundred and fifty-four patients (male/female = 60/94) with adult-onset leukoencephalopathies were identified. Mean age of onset was 38.6 years. In the vascular group, 41/55 patients (75%) finally had a diagnosis [including CADASIL (cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy, n = 32) and COL4A1 mutation, n = 7]. In the cavitary group, 13/17 (76%) patients had a diagnosis of EIF2B-related disorder. In the third group (n = 82), a systematic biological screening allowed a diagnosis in 23 patients (28%) and oriented direct genetic screening identified 21 additional diseases (25.6%). Adult-onset genetic leukoencephalopathies are a rare but probably underestimated entity. Our study confirms the use of a magnetic resonance imaging-based classification with a final diagnosis rate of 64% (98/154) cases.


Subject(s)
Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , Adolescent , Adult , Age of Onset , Aged , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/pathology , Female , France , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Retrospective Studies , White Matter/pathology , Young Adult
13.
Nature ; 467(7313): 318-22, 2010 Sep 16.
Article in English | MEDLINE | ID: mdl-20844535

ABSTRACT

The ß-haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of ß-thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells. Compound ß(E)/ß(0)-thalassaemia is the most common form of severe thalassaemia in southeast Asian countries and their diasporas. The ß(E)-globin allele bears a point mutation that causes alternative splicing. The abnormally spliced form is non-coding, whereas the correctly spliced messenger RNA expresses a mutated ß(E)-globin with partial instability. When this is compounded with a non-functional ß(0) allele, a profound decrease in ß-globin synthesis results, and approximately half of ß(E)/ß(0)-thalassaemia patients are transfusion-dependent. The only available curative therapy is allogeneic haematopoietic stem cell transplantation, although most patients do not have a human-leukocyte-antigen-matched, geno-identical donor, and those who do still risk rejection or graft-versus-host disease. Here we show that, 33 months after lentiviral ß-globin gene transfer, an adult patient with severe ß(E)/ß(0)-thalassaemia dependent on monthly transfusions since early childhood has become transfusion independent for the past 21 months. Blood haemoglobin is maintained between 9 and 10 g dl(-1), of which one-third contains vector-encoded ß-globin. Most of the therapeutic benefit results from a dominant, myeloid-biased cell clone, in which the integrated vector causes transcriptional activation of HMGA2 in erythroid cells with further increased expression of a truncated HMGA2 mRNA insensitive to degradation by let-7 microRNAs. The clonal dominance that accompanies therapeutic efficacy may be coincidental and stochastic or result from a hitherto benign cell expansion caused by dysregulation of the HMGA2 gene in stem/progenitor cells.


Subject(s)
Blood Transfusion , Genetic Therapy , HMGA2 Protein/metabolism , beta-Globins/genetics , beta-Globins/metabolism , beta-Thalassemia/genetics , beta-Thalassemia/therapy , Adolescent , Blood Cells/cytology , Blood Cells/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Child, Preschool , Clone Cells/metabolism , Gene Expression , Genetic Vectors/genetics , HMGA2 Protein/genetics , Homeostasis , Humans , Lentivirus/genetics , Male , MicroRNAs/genetics , Organ Specificity , RNA, Messenger/analysis , RNA, Messenger/genetics , Time Factors , Transcriptional Activation , Young Adult , beta-Thalassemia/metabolism
14.
Eur J Neurosci ; 41(10): 1345-55, 2015 May.
Article in English | MEDLINE | ID: mdl-25847620

ABSTRACT

Elevations in neuronal cholesterol have been associated with several degenerative diseases. An enhanced excitability and synchronous firing in surviving neurons are among the sequels of neuronal death in these diseases and also in some epileptic syndromes. Here, we attempted to increase neuronal cholesterol levels, using a short hairpin RNA to suppress expression of the enzyme cytochrome P450 family 46, subfamily A, polypeptide 1 gene (CYP46A1). This protein hydroxylates cholesterol and so facilitates transmembrane extrusion. A short hairpin RNA CYP46A1construction coupled to the adeno-associated virus type 5 was injected focally and unilaterally into mouse hippocampus. It was selectively expressed first in neurons of the cornu ammonis (hippocampus) (CA)3a region. Cytoplasmic and membrane cholesterol increased, and the neuronal soma volume increased and then decreased before pyramidal cells died. As CA3a pyramidal cells died, interictal electroencephalographic (EEG) events occurred during exploration and non-rapid eye movement sleep. With time, neuronal death spread to involve pyramidal cells and interneurons of the CA1 region. CA1 neuronal death was correlated with a delayed local expression of phosphorylated tau. Astrocytes were activated throughout the hippocampus and microglial activation was specific to regions of neuronal death. CA1 neuronal death was correlated with distinct aberrant EEG activity. During exploratory behaviour and rapid eye movement sleep, EEG oscillations at 7-10 Hz (theta) could accelerate to 14-21 Hz (beta) waves. They were accompanied by low-amplitude, high-frequency oscillations of peak power at ~300 Hz and a range of 250-350 Hz. Although episodes of EEG acceleration were not correlated with changes in exploratory behaviour, they were followed in some animals by structured seizure-like discharges. These data strengthen links between increased cholesterol, neuronal sclerosis and epileptic behaviour.


Subject(s)
CA3 Region, Hippocampal/pathology , CA3 Region, Hippocampal/physiopathology , Cholesterol/toxicity , Epilepsy/pathology , Pyramidal Cells/pathology , Pyramidal Cells/physiology , Animals , Astrocytes/metabolism , CA3 Region, Hippocampal/metabolism , Cell Death , Cholesterol/metabolism , Cholesterol 24-Hydroxylase , Dependovirus/physiology , Electroencephalography , Epilepsy/etiology , Female , Genetic Vectors , Mice , Mice, Inbred C57BL , Microglia/metabolism , Phosphorylation , Pyramidal Cells/metabolism , RNA, Small Interfering/genetics , Sclerosis , Steroid Hydroxylases/pharmacology , tau Proteins/metabolism
15.
Mol Genet Metab ; 114(4): 494-500, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25649058

ABSTRACT

OBJECTIVE: An approved definition of the term leukodystrophy does not currently exist. The lack of a precise case definition hampers efforts to study the epidemiology and the relevance of genetic white matter disorders to public health. METHOD: Thirteen experts at multiple institutions participated in iterative consensus building surveys to achieve definition and classification of disorders as leukodystrophies using a modified Delphi approach. RESULTS: A case definition for the leukodystrophies was achieved, and a total of 30 disorders were classified under this definition. In addition, a separate set of disorders with heritable white matter abnormalities but not meeting criteria for leukodystrophy, due to presumed primary neuronal involvement and prominent systemic manifestations, was classified as genetic leukoencephalopathies (gLE). INTERPRETATION: A case definition of leukodystrophies and classification of heritable white matter disorders will permit more detailed epidemiologic studies of these disorders.


Subject(s)
Demyelinating Diseases , Leukoencephalopathies , Lysosomal Storage Diseases , Brain Diseases/classification , Demyelinating Diseases/classification , Humans , Leukoencephalopathies/classification , Leukoencephalopathies/genetics , Lysosomal Storage Diseases/classification , Myelin Sheath/physiology , Neuroglia/physiology
16.
Brain ; 137(Pt 3): 693-706, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24480483

ABSTRACT

X-linked adrenoleukodystrophy is the most common peroxisomal disorder. The disease is caused by mutations in the ABCD1 gene that encodes the peroxisomal transporter of very long-chain fatty acids. A defect in the ABCD1 protein results in elevated levels of very long-chain fatty acids in plasma and tissues. The clinical spectrum in males with X-linked adrenoleukodystrophy has been well described and ranges from isolated adrenocortical insufficiency and slowly progressive myelopathy to devastating cerebral demyelination. As in many X-linked diseases, it was assumed that female carriers remain asymptomatic and only a few studies addressed the phenotype of X-linked adrenoleukodystrophy carriers. These studies, however, provided no information on the prevalence of neurological symptoms in the entire population of X-linked adrenoleukodystrophy carriers, since data were acquired in small groups and may be biased towards women with symptoms. Our primary goal was to investigate the symptoms and their frequency in X-linked adrenoleukodystrophy carriers. The secondary goal was to determine if the X-inactivation pattern of the ABCD1 gene was associated with symptomatic status. We included 46 X-linked adrenoleukodystrophy carriers in a prospective cross-sectional cohort study. Our data show that X-linked adrenoleukodystrophy carriers develop signs and symptoms of myelopathy (29/46, 63%) and/or peripheral neuropathy (26/46, 57%). Especially striking was the occurrence of faecal incontinence (13/46, 28%). The frequency of symptomatic women increased sharply with age (from 18% in women <40 years to 88% in women >60 years of age). Virtually all (44/45, 98%) X-linked adrenoleukodystrophy carriers had increased very long-chain fatty acids in plasma and/or fibroblasts, and/or decreased very long-chain fatty acids beta-oxidation in fibroblasts. We did not find an association between the X-inactivation pattern and symptomatic status. We conclude that X-linked adrenoleukodystrophy carriers develop an adrenomyeloneuropathy-like phenotype and there is a strong association between symptomatic status and age. X-linked adrenoleukodystrophy should be considered in the differential diagnosis in women with chronic myelopathy and/or peripheral neuropathy (especially with early faecal incontinence). ABCD1 mutation analysis deserves a place in diagnostic protocols for chronic non-compressive myelopathy.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Adrenoleukodystrophy/physiopathology , Peripheral Nervous System Diseases/physiopathology , Spinal Cord Diseases/physiopathology , ATP Binding Cassette Transporter, Subfamily D, Member 1 , Adrenoleukodystrophy/blood , Adrenoleukodystrophy/complications , Adrenoleukodystrophy/genetics , Adult , Age Factors , Aged , Cohort Studies , Cross-Sectional Studies , Evoked Potentials/physiology , Female , Heterozygote , Humans , Middle Aged , Peripheral Nervous System Diseases/etiology , Prospective Studies , Spinal Cord Diseases/etiology , X Chromosome Inactivation/genetics , Young Adult
17.
Hum Mol Genet ; 21(5): 1062-77, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22095690

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD) is an inherited disorder characterized by axonopathy and demyelination in the central nervous system and adrenal insufficiency. Main X-ALD phenotypes are: (i) an adult adrenomyeloneuropathy (AMN) with axonopathy in spinal cords, (ii) cerebral AMN with brain demyelination (cAMN) and (iii) a childhood variant, cALD, characterized by severe cerebral demyelination. Loss of function of the ABCD1 peroxisomal fatty acid transporter and subsequent accumulation of very-long-chain fatty acids (VLCFAs) are the common culprits to all forms of X-ALD, an aberrant microglial activation accounts for the cerebral forms, whereas inflammation allegedly plays no role in AMN. How VLCFA accumulation leads to neurodegeneration and what factors account for the dissimilar clinical outcomes and prognosis of X-ALD variants remain elusive. To gain insights into these questions, we undertook a transcriptomic approach followed by a functional-enrichment analysis in spinal cords of the animal model of AMN, the Abcd1(-) null mice, and in normal-appearing white matter of cAMN and cALD patients. We report that the mouse model shares with cAMN and cALD a common signature comprising dysregulation of oxidative phosphorylation, adipocytokine and insulin signaling pathways, and protein synthesis. Functional validation by quantitative polymerase chain reaction, western blots and assays in spinal cord organotypic cultures confirmed the interplay of these pathways through IkB kinase, being VLCFA in excess a causal, upstream trigger promoting the altered signature. We conclude that X-ALD is, in all its variants, a metabolic/inflammatory syndrome, which may offer new targets in X-ALD therapeutics.


Subject(s)
Adipokines/metabolism , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/metabolism , Brain/metabolism , Fatty Acids/metabolism , Metabolic Networks and Pathways , Oxidative Phosphorylation , Spinal Cord/metabolism , ATP Binding Cassette Transporter, Subfamily D, Member 1 , ATP-Binding Cassette Transporters/genetics , Adiponectin/metabolism , Adult , Animals , Biosynthetic Pathways , Child , Disease Models, Animal , Disease Progression , Gene Expression , Gene Expression Profiling , Genetic Association Studies , Humans , I-kappa B Kinase/metabolism , Insulin/metabolism , Insulin Resistance , Leptin/metabolism , Mice , NF-kappa B/metabolism , Oxidative Stress , Signal Transduction , Toll-Like Receptors/metabolism , Transcriptome
19.
Brain ; 136(Pt 8): 2432-43, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23794606

ABSTRACT

X-linked adrenoleukodystrophy is a neurometabolic disorder caused by inactivation of the peroxisomal ABCD1 transporter of very long-chain fatty acids. In mice, ABCD1 loss causes late onset axonal degeneration in the spinal cord in association with locomotor disability resembling the most common phenotype in patients, adrenomyeloneuropathy. Increasing evidence indicates that oxidative stress and bioenergetic failure play major roles in the pathogenesis of X-linked adrenoleukodystrophy. In this study, we aimed to evaluate whether mitochondrial biogenesis is affected in X-linked adrenoleukodystrophy. We demonstrated that Abcd1 null mice show reduced mitochondrial DNA concomitant with downregulation of mitochondrial biogenesis pathway driven by PGC-1α/PPARγ and reduced expression of mitochondrial proteins cytochrome c, NDUFB8 and VDAC. Moreover, we show that the oral administration of pioglitazone, an agonist of PPARγ, restored mitochondrial content and expression of master regulators of biogenesis, neutralized oxidative damage to proteins and DNA, and reversed bioenergetic failure in terms of ATP levels, NAD+/NADH ratios, pyruvate kinase and glutathione reductase activities. Most importantly, the treatment halted locomotor disability and axonal damage in X-linked adrenoleukodystrophy mice. These results lend support to the use of pioglitazone in clinical trials with patients with adrenomyeloneuropathy and reveal novel molecular mechanisms of action of pioglitazone in neurodegeneration. Future studies should address the effects of this anti-diabetic drug on other axonopathies in which oxidative stress and mitochondrial dysfunction are contributing factors.


Subject(s)
Adrenoleukodystrophy/drug therapy , Axons/drug effects , Hypoglycemic Agents/therapeutic use , Nerve Degeneration/drug therapy , Thiazolidinediones/therapeutic use , ATP Binding Cassette Transporter, Subfamily D, Member 1 , ATP-Binding Cassette Transporters/genetics , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/pathology , Animals , Axons/metabolism , Axons/pathology , Disease Models, Animal , Fatty Acids/metabolism , Glutathione Reductase/metabolism , Humans , Hypoglycemic Agents/pharmacology , Mice , Mice, Knockout , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Pioglitazone , Thiazolidinediones/pharmacology , Treatment Outcome
20.
Biochim Biophys Acta ; 1822(9): 1465-74, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22483867

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD) is the most frequent peroxisomal disease. The two main clinical phenotypes of X-ALD are adrenomyeloneuropathy (AMN) and inflammatory cerebral ALD that manifests either in children or more rarely in adults. About 65% of heterozygote females develop symptoms by the age of 60years. Mutations in the ABCD1 gene affect the function of the encoded protein ALDP, an ATP-binding-cassette (ABC) transporter located in the peroxisomal membrane protein. ALDP deficiency impairs the peroxisomal beta-oxidation of very long-chain fatty acids (VLCFA) and facilitates their further chain elongation by ELOVL1 resulting in accumulation of VLCFA in plasma and tissues. While all patients have mutations in the ABCD1 gene, there is no general genotype-phenotype correlation. Environmental factors and a multitude of modifying genes appear to determine the clinical manifestation in this monogenetic but multifactorial disease. This review focuses on the clinical, biochemical, genetic and pathophysiological aspects of X-ALD.


Subject(s)
Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/metabolism , ATP Binding Cassette Transporter, Subfamily D, Member 1 , ATP-Binding Cassette Transporters/genetics , Adrenoleukodystrophy/diagnosis , Adrenoleukodystrophy/physiopathology , Animals , Brain/abnormalities , Brain/pathology , Fatty Acids/metabolism , Female , Humans , Mutation , Phenotype , Pregnancy , Prenatal Diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL