Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters

Publication year range
1.
Environ Res ; 263(Pt 1): 120023, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293751

ABSTRACT

BACKGROUND: Evidence suggests that air pollution modifies the association between heat and mortality. However, most studies have been conducted in cities without rural data. This time-series study examined potential effect modification of particulate matter (PM) and ozone (O3) on heat-related mortality using small-area data from five European countries, and explored the influence of area characteristics. METHODS: We obtained daily non-accidental death counts from both urban and rural areas in Norway, England and Wales, Germany, Italy, and the Attica region of Greece during the warm season (2000-2018). Daily mean temperatures and air pollutant concentrations were estimated by spatial-temporal models. Heat effect modification by air pollution was assessed in each small area by over-dispersed Poisson regression models with a tensor smoother between temperature and air pollution. We extracted temperature-mortality relationships at the 5th (low), 50th (medium), and 95th (high) percentiles of pollutant distributions. At each air pollution level, we estimated heat-related mortality for a temperature increase from the 75th to the 99th percentile. We applied random-effects meta-analysis to derive the country-specific and overall associations, and mixed-effects meta-regression to examine the influence of urban-rural and coastal typologies and greenness on the heat effect modification by air pollution. RESULTS: Heat-related mortality risks increased with higher PM levels, rising by 6.4% (95% CI: -2.0%-15.7%), 10.7% (2.6%-19.5%), and 14.1% (4.4%-24.6%) at low, medium, and high PM levels, respectively. This effect modification was consistent in urban and rural regions but more pronounced in non-coastal regions. In addition, heat-mortality associations were slightly stronger at high O3 levels, particularly in regions with low greenness. CONCLUSION: Our analyses of both urban and rural data indicate that air pollution may intensify heat-related mortality, particularly in non-coastal and less green regions. The synergistic effect of heat and air pollution implies a potential pathway of reducing heat-related health impacts by improving air quality.

2.
Environ Health ; 23(1): 10, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267931

ABSTRACT

BACKGROUND: The independent effects of short-term exposure to increased air temperature and air pollution on mortality are well-documented. There is some evidence indicating that elevated concentrations of air pollutants may lead to increased heat-related mortality, but this evidence is not consistent. Most of these effects have been documented through time-series studies using city-wide data, rather than at a finer spatial level. In our study, we examined the possible modification of the heat effects on total and cause-specific mortality by air pollution at municipality level in the Attica region, Greece, during the warm period of the years 2000 to 2016. METHODS: A municipality-specific over-dispersed Poisson regression model during the warm season (May-September) was used to investigate the heat effects on mortality and their modification by air pollution. We used the two-day average of the daily mean temperature and daily mean PM10, NO2 and 8 hour-max ozone (O3), derived from models, in each municipality as exposures. A bivariate tensor smoother was applied for temperature and each pollutant alternatively, by municipality. Α random-effects meta-analysis was used to obtain pooled estimates of the heat effects at different pollution levels. Heterogeneity of the between-levels differences of the heat effects was evaluated with a Q-test. RESULTS: A rise in mean temperature from the 75th to the 99th percentile of the municipality-specific temperature distribution resulted in an increase in total mortality of 12.4% (95% Confidence Interval (CI):7.76-17.24) on low PM10 days, and 21.25% (95% CI: 17.83-24.76) on high PM10 days. The increase on mortality was 10.09% (95% CI: - 5.62- 28.41) on low ozone days, and 14.95% (95% CI: 10.79-19.27) on high ozone days. For cause-specific mortality an increasing trend of the heat effects with increasing PM10 and ozone levels was also observed. An inconsistent pattern was observed for the modification of the heat effects by NO2, with higher heat effects estimated in the lower level of the pollutant. CONCLUSIONS: Our results support the evidence of elevated heat effects on mortality at higher levels of PM10 and 8 h max O3. Under climate change, any policy targeted at lowering air pollution levels will yield significant public health benefits.


Subject(s)
Air Pollution , Environmental Pollutants , Ozone , Humans , Greece/epidemiology , Hot Temperature , Nitrogen Dioxide , Air Pollution/adverse effects , Ozone/adverse effects
3.
Scand J Public Health ; : 14034948241269748, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39185636

ABSTRACT

Over the past century, the Earth's climate has undergone rapid and unprecedented changes, manifested in a noticeable increase in average global temperature. This has led to shifts in precipitation patterns, increased frequency of extreme weather events (e.g. hurricanes, heatwaves, droughts and floods), alterations in ecosystems, and rising sea levels, impacting both natural environments and human societies, health and wellbeing. Without deep and urgent emission cuts and effective adaptation, the toll of climate change on human health and wellbeing is likely to grow. Here, we address the complex relationship between climate change and health, and discuss ways forward for transdisciplinary research and collaboration that can motivate more ambitious mitigation policies and help develop solutions to adapt to the crisis.

4.
Scand J Public Health ; : 14034948241247614, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38872491

ABSTRACT

BACKGROUND AND AIMS: Climate change affects our societies and lives through our economies, our livelihoods, and our health. Economic losses of climate change are estimated at $23 trillion, largely through externalities due to premature mortality, healthcare expenditure, and health-related work losses. Even if there are established methods to quantify the health economic burden, there is limited information on how people perceive this information. The current study aimed to examine different health cost evaluation methods and observe perceptions of stakeholders in the climate change context. METHOD: The participatory research approach of the World Café with 41 participants was applied to explore four topics associated with valuing the costs of climate change. The data were analyzed following an inductive approach. RESULTS: Despite the willingness-to-pay approach being widely applied, many experts see actual healthcare costs as a more explicit indicator of costs; however, this approach might underestimate actual costs. Participants experienced difficulties accepting and understanding cost estimates that indicated very high externalities as a percentage of gross domestic product. The cost-effectiveness of mitigation and adaptation measures was also challenged by a concern that while the costs of such measures are incurred now, the benefits do not come to fruition until later, for example, when building bike lanes or dams. CONCLUSIONS: Policies should favor environmentally friendly activities such as making cycling more convenient in cities with the health benefits presented in monetary terms, while limiting car driving. Moreover, the public might better understand the costs of climate change via tools that map how solutions influence different sectors and outlining the costs in evaluating the benefits for health and the environment.

5.
Environ Res ; 224: 115453, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36773641

ABSTRACT

BACKGROUND: Studies on the health effects of heat are particularly limited in Texas, a U.S. state in the top 10 highest number of annual heat-related deaths per capita from 2018 to 2020. This study assessed the effects of heat on all-cause and cause-specific mortality in 12 metropolitan statistical areas (MSAs) across Texas from 1990 to 2011. METHODS: First, we determined the heat thresholds for each MSA above which the relation between temperature and mortality is linear. We then conducted a distributed lag non-linear model for each MSA, followed by a random effects meta-analysis to estimate the pooled effects for all MSAs. We repeated this process for each mortality cause and age group to achieve the effect estimates. RESULTS: We found a 1 °C temperature increase above the heat threshold is associated with an increase in the relative risk of all-cause mortality of 0.60% (95%CI [0.39%, 0.82%]) and 1.10% (95%CI [0.65%, 1.56%]) for adults older than 75. For each MSA, the relative risk of mortality for a 1 °C temperature increase above the heat threshold ranges from 0.10% (95%CI [0.09%, 0.10%]) to 1.29% (95%CI [1.26%, 1.32%]). Moreover, elevated temperatures showed a slight decrease in cardiovascular mortality (0.37%, 95%CI [-0.35%, 1.09%]) and respiratory disease (1.97%, 95%CI [-0.11%, 4.08%]), however this effect was not considered statistically significant.. CONCLUSION: Our study found that high temperatures can significantly impact all-cause mortality in Texas, and effect estimates differ by MSA, age group, and cause of death. Our findings generate critical information on the impact of heat on mortality in Texas, providing insights for policymakers on resource allocation and strategic intervention to reduce heat-related health effects.


Subject(s)
Hot Temperature , Cause of Death , Texas , Temperature , Cities
6.
Proc Natl Acad Sci U S A ; 117(32): 18984-18990, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32723816

ABSTRACT

The lockdown response to coronavirus disease 2019 (COVID-19) has caused an unprecedented reduction in global economic and transport activity. We test the hypothesis that this has reduced tropospheric and ground-level air pollution concentrations, using satellite data and a network of >10,000 air quality stations. After accounting for the effects of meteorological variability, we find declines in the population-weighted concentration of ground-level nitrogen dioxide (NO2: 60% with 95% CI 48 to 72%), and fine particulate matter (PM2.5: 31%; 95% CI: 17 to 45%), with marginal increases in ozone (O3: 4%; 95% CI: -2 to 10%) in 34 countries during lockdown dates up until 15 May. Except for ozone, satellite measurements of the troposphere indicate much smaller reductions, highlighting the spatial variability of pollutant anomalies attributable to complex NOx chemistry and long-distance transport of fine particulate matter with a diameter less than 2.5 µm (PM2.5). By leveraging Google and Apple mobility data, we find empirical evidence for a link between global vehicle transportation declines and the reduction of ambient NO2 exposure. While the state of global lockdown is not sustainable, these findings allude to the potential for mitigating public health risk by reducing "business as usual" air pollutant emissions from economic activities. Explore trends here: https://nina.earthengine.app/view/lockdown-pollution.


Subject(s)
Air Pollution/statistics & numerical data , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Quarantine/statistics & numerical data , Air Pollutants/analysis , Atmosphere/chemistry , COVID-19 , Coronavirus Infections/prevention & control , Humans , Nitrogen Dioxide/analysis , Ozone/analysis , Pandemics/prevention & control , Particulate Matter/analysis , Pneumonia, Viral/prevention & control , Quarantine/economics , Vehicle Emissions/analysis
7.
Environ Res ; 210: 112898, 2022 07.
Article in English | MEDLINE | ID: mdl-35181304

ABSTRACT

INTRODUCTION: There is an increasing interest in understanding whether air pollutants modify the quantitative relationships between temperature and health outcomes. The results of available studies were, however, inconsistent. This study aims to sum up the current evidence and provide a comprehensive understanding of this topic. METHODS: We conducted an electronic search in PubMed (MEDLINE), EMBASE, Web of Science Core Collection, and ProQuest Dissertations and Theses. The modified Navigation Guide was applied to evaluate the quality and strength of evidence. We calculated pooled temperature-related mortality at low and high pollutant levels respectively, using the random-effects model. RESULTS: We identified 22 eligible studies, eleven of which were included in the meta-analysis. Significant effect modification was observed on heat effects for all-cause and non-accidental mortality by particulate matter with an aerodynamic diameter of <10 µm (PM10) and ozone (O3) (p < 0.05). The excess risks (ERs) for all-cause and non-accidental mortality were 5.4% (4.4%, 6.4%) and 6.3% (4.8%, 7.8%) at the low PM10 level, 8.8% (7.5%, 10.1%) and 11.4% (8.7%, 14.2%) at the high PM10 level, respectively. As for O3, the ERs for all-cause and non-accidental mortality were 5.1% (3.9%, 6.3%) and 3.6% (0.1%, 7.2%) at the low O3 level, 7.6% (6.3%, 9.0%) and 12.5% (4.7%, 20.9%) at the high O3 level, respectively. Surprisingly, the heat effects on cardiovascular mortality were found to be lower at high carbon monoxide (CO) levels [ERs = 5.4% (3.9%, 6.9%)] than that at low levels [ERs = 9.4% (7.0%, 11.9%)]. The heterogeneity varied, but the results of sensitivity analyses were generally robust. Significant effect modification by air pollutants was not observed for heatwave or cold effects. CONCLUSIONS: PM10 and O3 modify the heat-related all-cause and non-accidental mortality, indicating that policymakers should consider air pollutants when establishing heat-health warning systems. Future studies with comparable designs and settings are needed.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Exposure/analysis , Nitrogen Dioxide/analysis , Ozone/analysis , Particulate Matter/analysis , Temperature
8.
Environ Sci Technol ; 55(14): 10046-10055, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34197097

ABSTRACT

China has been promoting one of the world's largest campaigns for clean heating renovation since 2017. Here, we present an integrated cost-benefit analysis in a major prefecture-level city by combining a large-scale household energy survey and PM2.5 exposure measurement, high-resolution chemical transport simulation, and health impact assessment. We find that the completed renovation decreases the share of solid fuels in the heating energy mix from 96 to 6% and achieves a concomitant reduction of cooking solid-fuel use by 70%. The completed renovation decreases the ambient PM2.5 concentration in Linfen by 0.5-5 µg m-3 (2.4 µg m-3 on average) and decreases the integrated PM2.5 exposure by 4.2 (3.5-5.0) µg m-3. The renovation is estimated to avoid 162 (125-225) and 328 (254-457) premature deaths annually based on two health impact assessment methods. The ratios of monetized health benefits to cost are 1.51 (0.73-2.59) and 3.06 (1.49-5.23) based on the above two methods. The benefit-to-cost ratio is projected to remain high if the renovation is further expanded. More polluted and less wealthy households enjoy larger health benefits but also experience a higher expense increase, suggesting that a more carefully designed subsidy policy is needed to protect low-income households.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Air Pollution, Indoor/analysis , China , Cooking , Cost-Benefit Analysis , Heating , Humans , Particulate Matter/analysis
9.
Environ Res ; 192: 110403, 2021 01.
Article in English | MEDLINE | ID: mdl-33152273

ABSTRACT

The lockdown response to COVID-19 has resulted in an unprecedented reduction in global economic activity and associated air pollutant levels, especially from a decline in land transportation. We utilized a network of >10,000 air quality stations distributed over 34 countries during lockdown dates up until 15 May 2020 to obtain lockdown related anomalies for nitrogen dioxide, ozone and particulate matter smaller than 2.5 µm in diameter (PM2.5). Pollutant anomalies were related to short-term health outcomes using empirical exposure-response functions. We estimate that there were a net total of 49,900 (11,000 to 90,000; 95% confidence interval) excess deaths and 89,000 (64,700 to 107,000) pediatric asthma emergency room visits avoided during lockdowns. In China and India alone, the PM2.5-related avoided excess mortality was 19,600 (15,300 to 24,000) and 30,500 (5700 to 68,000), respectively. While the state of COVID-19 imposed lockdown is not sustainable, these findings illustrate the potential health benefits gained by reducing "business as usual" air pollutant emissions from economic activities primarily through finding alternative transportation solutions.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Child , China/epidemiology , Global Health , Humans , India , Pandemics , Particulate Matter/analysis , SARS-CoV-2
10.
Proc Natl Acad Sci U S A ; 115(49): 12401-12406, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30455309

ABSTRACT

To tackle the severe fine particle (PM2.5) pollution in China, the government has implemented stringent control policies mainly on power plants, industry, and transportation since 2005, but estimates of the effectiveness of the policy and the temporal trends in health impacts are subject to large uncertainties. By adopting an integrated approach that combines chemical transport simulation, ambient/household exposure evaluation, and health-impact assessment, we find that the integrated population-weighted exposure to PM2.5 (IPWE) decreased by 47% (95% confidence interval, 37-55%) from 2005 [180 (146-219) µg/m3] to 2015 [96 (83-111) µg/m3]. Unexpectedly, 90% (86-93%) of such reduction is attributed to reduced household solid-fuel use, primarily resulting from rapid urbanization and improved incomes rather than specific control policies. The IPWE due to household fuels for both cooking and heating decreased, but the impact of cooking is significantly larger. The reduced household-related IPWE is estimated to avoid 0.40 (0.25-0.57) million premature deaths annually, accounting for 33% of the PM2.5-induced mortality in 2015. The IPWE would be further reduced by 63% (57-68%) if the remaining household solid fuels were replaced by clean fuels, which would avoid an additional 0.51 (0.40-0.64) million premature deaths. Such a transition to clean fuels, especially for heating, requires technology innovation and policy support to overcome the barriers of high cost of distribution systems, as is recently being attempted in the Beijing-Tianjin-Hebei area. We suggest that household-fuel use be more highly prioritized in national control policies, considering its effects on PM2.5 exposures.


Subject(s)
Air Pollutants/toxicity , Air Pollution, Indoor/prevention & control , Family Characteristics , Heating , Mortality, Premature , Particulate Matter/toxicity , Air Pollutants/chemistry , China , Cooking , Humans , Particulate Matter/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL