ABSTRACT
BACKGROUND: Alzheimer's disease (AD) is the leading cause of dementia in the world. The pathology of AD is affiliated with the elevation of both tau (τ) and ß-amyloid (Aß) pathologies. Yet, the direct link between natural τ expression on glia cell activity and Aß remains unclear. While experiments in mouse models suggest that an increase in Aß exacerbates τ pathology when expressed under a neuronal promoter, brain pathology from AD patients suggests an appearance of τ pathology in regions without Aß. METHODS: Here, we aimed to assess the link between τ and Aß using a new mouse model that was generated by crossing a mouse model that expresses two human mutations of the human MAPT under a mouse Tau natural promoter with 5xFAD mice that express human mutated APP and PS1 in neurons. RESULTS: The new mouse model, called 5xFAD TAU, shows accelerated cognitive impairment at 2 months of age, increased number of Aß depositions at 4 months and neuritic plaques at 6 months of age. An expression of human mutated TAU in astrocytes leads to a dystrophic appearance and reduces their ability to engulf Aß, which leads to an increased brain Aß load. Astrocytes expressing mutated human TAU showed an impairment in the expression of vascular endothelial growth factor (VEGF) that has previously been suggested to play an important role in supporting neurons. CONCLUSIONS: Our results suggest the role of τ in exacerbating Aß pathology in addition to pointing out the potential role of astrocytes in disease progression. Further research of the crosstalk between τ and Aß in astrocytes may increase our understanding of the role glia cells have in the pathology of AD with the aim of identifying novel therapeutic interventions to an otherwise currently incurable disease.
Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals , Humans , Infant , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Astrocytes/metabolism , Brain/metabolism , Disease Models, Animal , Mice, Transgenic , tau Proteins/genetics , tau Proteins/metabolism , Vascular Endothelial Growth Factor A/metabolismABSTRACT
Accumulation of ß-amyloid (Aß) deposits is a primary pathological feature of Alzheimer disease that is correlated with neurotoxicity and cognitive decline. The role of glycogen synthase kinase-3 (GSK-3) in Alzheimer disease pathogenesis has been debated. To study the role of GSK-3 in Aß pathology, we used 5XFAD mice co-expressing mutated amyloid precursor protein and presenilin-1 that develop massive cerebral Aß loads. Both GSK-3 isozymes (α/ß) were hyperactive in this model. Nasal treatment of 5XFAD mice with a novel substrate competitive GSK-3 inhibitor, L803-mts, reduced Aß deposits and ameliorated cognitive deficits. Analyses of 5XFAD hemi-brain samples indicated that L803-mts restored the activity of mammalian target of rapamycin (mTOR) and inhibited autophagy. Lysosomal acidification was impaired in the 5XFAD brains as indicated by reduced cathepsin D activity and decreased N-glycoyslation of the vacuolar ATPase subunit V0a1, a modification required for lysosomal acidification. Treatment with L803-mts restored lysosomal acidification in 5XFAD brains. Studies in SH-SY5Y cells confirmed that GSK-3α and GSK-3ß impair lysosomal acidification and that treatment with L803-mts enhanced the acidic lysosomal pool as demonstrated in LysoTracker Red-stained cells. Furthermore, L803-mts restored impaired lysosomal acidification caused by dysfunctional presenilin-1. We provide evidence that mTOR is a target activated by GSK-3 but inhibited by impaired lysosomal acidification and elevation in amyloid precursor protein/Aß loads. Taken together, our data indicate that GSK-3 is a player in Aß pathology. Inhibition of GSK-3 restores lysosomal acidification that in turn enables clearance of Aß burdens and reactivation of mTOR. These changes facilitate amelioration in cognitive function.
Subject(s)
Acids/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/physiology , Disease Models, Animal , Glycogen Synthase Kinase 3/antagonists & inhibitors , Lysosomes/metabolism , TOR Serine-Threonine Kinases/metabolism , Alzheimer Disease/physiopathology , Animals , Autophagy , Brain/metabolism , Cell Line , Electrophoresis, Polyacrylamide Gel , Humans , In Vitro Techniques , MiceABSTRACT
Inhibiting glycogen synthase kinase-3 (GSK-3) activity has become an attractive approach for treatment of neurodegenerative and psychiatric disorders. Diverse GSK-3 inhibitors have been reported and used in cellular and in vivo models. A major challenge, however, is achieving selectivity. In addition, it is increasingly recognized that a moderate inhibition of a cellular target, particularly for long-term treatment, provides more favorable outcome than complete inhibition. Substrate competitive inhibitors can fulfill the requirement for selectivity and allow fine tuning of the degree of inhibition. Here we describe the therapeutic potential of GSK-3 inhibitors and highlight our progress in the development of substrate competitive inhibitors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Subject(s)
Glycogen Synthase Kinase 3/antagonists & inhibitors , Oligopeptides/pharmacology , Protein Kinase Inhibitors/pharmacology , Glycogen Synthase Kinase 3/chemistry , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Mental Disorders/enzymology , Mental Disorders/prevention & control , Models, Molecular , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/prevention & control , Oligopeptides/metabolism , Oligopeptides/therapeutic use , Protein Binding , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/therapeutic use , Protein Structure, TertiaryABSTRACT
Impaired lysosomal activity, which results in defective protein processing, waste accumulation, and protein aggregation, is implicated in a number of disease pathologies. Acidification of lysosomes is a crucial process required for lysosome function. Previously we showed that inhibition of glycogen synthase kinase-3 (GSK-3) enhanced lysosomal acidification in both normal and pathological conditions. However, how GSK-3 integrates into the lysosome networking is unknown. Here we show that inhibition of mTORC1 and increased autophagic activity are downstream to GSK-3 inhibition and contribute to lysosomal acidification. Strikingly, lysosomal acidification is also restored by GSK-3 inhibition in the absence of functional autophagy, and, independently of mTORC1. This is facilitated by increased endocytic traffic: We show that GSK-3 inhibition enhanced material internalization, increased recruitment of active Rab5 into endosomes, and increased Rab7/RILP clustering into lysosomes, all processes required for late endosome maturation. Consistently, in cells defective in endocytic traffic caused by either constitutively active Rab5, or, deletion of the Niemann-Pick C1 protein, GSK-3 inhibition could not restore lysosomal acidification. Finally we found that the tuberous sclerosis complex, TSC, is required for lysosomal acidification and is activated by GSK-3 inhibition. Thus, the GSK-3/TSC axis regulates lysosomal acidification via both the autophagic and endocytic pathways. Our study provides new insights into the therapeutic potential of GSK-3 inhibitors in treating pathological conditions associated with impaired cellular clearance.
Subject(s)
Acids/metabolism , Autophagy , Endocytosis , Glycogen Synthase Kinase 3/metabolism , Lysosomes/metabolism , Signal Transduction , Tuberous Sclerosis/metabolism , Animals , Glycogen Synthase Kinase 3/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Protein Transport , rab GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/metabolism , rab7 GTP-Binding ProteinsABSTRACT
Development of protein kinase inhibitors is a focus of many drug discovery programs. A major problem, however, is the limited specificity of the commonly used adenosine triphosphate-competitive inhibitors and the weak inhibition of the more selective substrate-competitive inhibitors. Glycogen synthase kinase-3 (GSK-3) is a promising drug target for treating neurodegenerative disorders, including Alzheimer's disease (AD), but most GSK-3 inhibitors have not reached the clinic. We describe a new type of GSK-3 inhibitor, L807mts, that acts through a substrate-to-inhibitor conversion mechanism that occurs within the catalytic site of the enzyme. We determined that L807mts was a potent and highly selective GSK-3 inhibitor with reasonable pharmacological and safety properties when tested in rodents. Treatment with L807mts enhanced the clearance of ß-amyloid loads, reduced inflammation, enhanced autophagic flux, and improved cognitive and social skills in the 5XFAD AD mouse model. This new modality of GSK-3 inhibition may be therapeutic in patients with AD or other central nervous system disorders associated with dysregulated GSK-3.
Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Peptides/pharmacology , Animals , Cell Line , Disease Models, Animal , Enzyme Inhibitors/chemistry , Glycogen Synthase Kinase 3/metabolism , Humans , Male , Mice , Peptides/chemistryABSTRACT
Aberrant regulation of glycogen synthase kinase-3 (GSK-3) is implicated in Alzheimer's disease (AD), but the mechanisms involved remain elusive. Our recent study shows that GSK-3 impairs lysosomal acidification and that inhibition of GSK-3 re-acidified lysosomes in brains of AD mice. This effect was accompanied by reductions in ß-amyloid pathology and amelioration of cognitive deficits. Presenilin-1 (PS1) is an essential factor in lysosomal acidification. To determine whether the inhibition of GSK-3 restores lysosomal malfunction caused by dysfunctional PS1, we treated MEF cells deficient in presenilin proteins (MEF-PS1/2(-/-)) with a selective substrate competitive GSK-3 inhibitor, L803-mts. L803-mts enhanced the acidic lysosomal pool in MEF-PS1/2(-/-) cells and increased levels of activated cathepsin D in the lysosomes. We conclude that GSK-3 and PS1 operate via similar mechanisms to disrupt lysosomal acidification. Importantly, these data indicate that GSK-3 inhibitors have potential in treatment of conditions associated with defective PS1.
ABSTRACT
Mammalian glycogen synthase kinase-3 (GSK-3), a critical regulator in neuronal signaling, cognition, and behavior, exists as two isozymes GSK-3α and GSK-3ß. Their distinct biological functions remains largely unknown. Here, we examined the evolutionary significance of each of these isozymes. Surprisingly, we found that unlike other vertebrates that harbor both GSK-3 genes, the GSK-3α gene is missing in birds. GSK-3-mediated tau phosphorylation was significantly lower in adult bird brains than in mouse brains, a phenomenon that was reproduced in GSK-3α knockout mouse brains. Tau phosphorylation was detected in brains from bird embryos suggesting that GSK-3 isozymes play distinct roles in tau phosphorylation during development. Birds are natural GSK-3α knockout organisms and may serve as a novel model to study the distinct functions of GSK-3 isozymes.