Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Mol Divers ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009909

ABSTRACT

Pyridone heterocycles, such as furo[2,3-b]pyridines, have emerged as prominent scaffolds in medicinal chemistry due to their versatile pharmacological properties, including significant anticancer activity. In this study, we successfully synthesized new pyridine-2(H)-one, nicotinonitrile, and furo[2,3-b]pyridine derivatives from chalcones bearing 4-(benzyloxy)phenyl and dichlorothiophenyl subunits to explore their therapeutic potential against breast cancer. By employing a synthetic strategy involving Claisen-Schmidt condensation followed by sequential cyclizations and functional modifications, we synthesized and characterized four compounds (MI-S0, MI-S1, MI-S2, and MI-S3) using various spectroscopic methods, including FT-IR, 1H-NMR, 13C-NMR, DEPT, H,H- and C,H-COSY, and HRMS. The in vitro cytotoxic activity of these compounds was evaluated against two breast cancer cell lines, MCF-7 and MDA-MB-231, and compared with a noncancerous breast cell line, MCF-10A. All compounds exhibited potent cytotoxic activities with minimal selectivity toward normal cells. Molecular docking studies targeting the serine/threonine kinase AKT1, estrogen receptor alpha (ERα), and human epidermal growth factor receptor 2 (HER2) revealed strong binding affinities, suggesting a mechanism involving the disruption of key cellular signaling pathways. These findings underscore the potential of furo[2,3-b]pyridine derivatives as promising candidates for further development into anticancer agents, laying the groundwork for future investigations into their selective therapeutic efficacy and molecular mechanisms of action.

2.
J Asian Nat Prod Res ; 26(7): 843-849, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38511479

ABSTRACT

A new seco-A tirucallane triterpenoid named excelxylin A (1), along with two known seco-A triterpenoids (2-3), were isolated from the n-hexane extract of Dysoxylum excelsum (Spreng.) Blume ex G.Don stem bark. The structure and stereochemistry configuration of compounds 1-3 was established by NMR, IR, and HR-ESI-MS spectroscopic data analyses and comparison of their NMR data with literatures. The compounds exhibited the carbon framework for seco-A ring tirucallane triterpenoid, first reported in the Dysoxylum genus. All compounds were tested for their cytotoxicity against human cervical HeLa cells.


Subject(s)
Meliaceae , Plant Bark , Triterpenes , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Plant Bark/chemistry , Humans , Molecular Structure , Meliaceae/chemistry , HeLa Cells , Plant Stems/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Drug Screening Assays, Antitumor , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Nuclear Magnetic Resonance, Biomolecular
3.
J Asian Nat Prod Res ; 25(1): 36-43, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35128999

ABSTRACT

Two new azadirone-type limonoids, namely lasiocarpine A (1) and lasiocarpine B (2) were isolated from the fruit of Chisocheton lasiocarpus along with three known limonoids (3-5). UV, IR, one- and two- dimensional NMR, and mass spectrometry were used to determine the chemical structure of the isolated compounds. Furthermore, their cytotoxic activity against breast cancer cell line MCF-7 was evaluated using PrestoBlue reagent. From these compounds, lasiocarpine A (1) showed the strongest activity with an IC50 value of 43.38 µM.


Subject(s)
Antineoplastic Agents , Limonins , Meliaceae , Meliaceae/chemistry , Fruit/chemistry , Limonins/pharmacology , Limonins/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure
4.
J Asian Nat Prod Res ; 25(8): 803-809, 2023.
Article in English | MEDLINE | ID: mdl-36409205

ABSTRACT

Chisocarpene A (1) is a new tirucallane-type triterpenoid together with odoratone (2) and 24-methylenecycloartanol (3), isolated from the stem bark of Chisocheton lasiocarpus. The chemical structures of compounds 1-3 were elucidated through a detailed analysis of their spectroscopic data (IR, MS, 1 D, and 2 D NMR). The isolated compounds were evaluated for cytotoxic activity against the MCF-7 breast cancer cell line using a resazurin-based assay. Compound 1 showed the most potent activity (IC50 26.56 ± 1.01 µM) and was two-fold more active than the positive control.

5.
Molecules ; 28(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37446608

ABSTRACT

The Aglaia genus, a member of the Meliaceae family, is generally recognized to include a number of secondary metabolite compounds with diverse structures and biological activities, including triterpenoids. Among the members of this genus, Aglaia cucullata has been reported to have unique properties and thrives exclusively in mangrove ecosystems. This plant is also known to contain various metabolites, such as flavaglines, bisamides, and diterpenoids, but there are limited reports on the isolation of triterpenoid compounds from its stem bark. Therefore, this research attempted to isolate and elucidate seven triterpenoids belonging to dammarane-type (1-7) from the stem bark of Aglaia cucullata. The isolated compounds included 20S,24S-epoxy-3α,25-dihydroxy-dammarane (1), dammaradienone (2), 20S-hydroxy-dammar-24-en-3-on (3), eichlerianic acid (4), (20S,24RS)-23,24-epoxy-24-methoxy-25,26,27-tris-nor dammar-3-one (5), 3α-acetyl-cabraleahydroxy lactone (6), and 3α-acetyl-20S,24S-epoxy-3α,25-dihydroxydammarane (7). Employing spectroscopic techniques, the chemical structures of the triterpenoids were identified using FTIR, NMR, and HRESITOF-MS. The cytotoxic activity of compounds 1-7 was tested with the PrestoBlue cell viability reagent against MCF-7 breast cancer, B16-F10 melanoma, and CV-1 normal kidney fibroblast cell lines. The results displayed that compound 5 had the highest level of bioactivity compared to the others. Furthermore, the IC50 values obtained were more than 100 µM, indicating the low potential of natural dammarane-type triterpenoids as anticancer agents. These findings provided opportunities for further studies aiming to increase their cytotoxic activities through semi-synthetic methods.


Subject(s)
Aglaia , Antineoplastic Agents , Meliaceae , Triterpenes , Aglaia/chemistry , Meliaceae/chemistry , Plant Bark/chemistry , Ecosystem , Triterpenes/chemistry , Magnetic Resonance Spectroscopy , Antineoplastic Agents/analysis , Molecular Structure , Dammaranes
6.
Molecules ; 27(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36080141

ABSTRACT

The Heck cross-coupling reaction is a well-established chemical tool for the synthesis of unsaturated compounds by formation of a new C-C bond. In this study, 1,3-diarylpropene derivatives, designed as structural analogues of stilbenoids and dihydrostilbenoids, were synthesised by the palladium-catalysed reactions of 2-amidoiodobenzene derivatives with either estragole or eugenol. The products were obtained with high (E) stereoselectivity but as two regioisomers. The ratios of isomers were found to be dependent on the nature of the allylbenzene partner and were rationalised by electronic effects exercising a determining influence in the ß-hydride elimination step. In addition, the cytotoxic effects of all the Heck reaction products were evaluated against MCF-7 and MDA-MB-231 human breast cancer cells, with unpromising results. Among all, compound 7d exhibited weak cytotoxic activity towards MCF-7 cell lines with IC50 values of 47.92 µM in comparison with tamoxifen and was considered to have general toxicity (SI value < 2).


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Palladium/chemistry , Palladium/pharmacology , Structure-Activity Relationship , Tamoxifen/pharmacology
7.
Molecules ; 27(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36235298

ABSTRACT

Two new dammarane-type triterpenoid fatty acid ester derivatives, 3ß-oleate-20S-hydroxydammar-24-en (1) and 3ß-oleate-20S,24S-epoxy-25-hydroxydammarane (2) with a known dammarane-type triterpenoid compound, such as 20S-hydroxydammar-24-en-3-on (3), were isolated from the stem bark of Aglaiaelliptica (C.DC.) Blume. The chemical structures were determined by spectroscopic methods, including FTIR, NMR (one and two-dimensional), and HRESITOF-MS analysis, as well as chemical derivatization and comparison with previous literature. Furthermore, the synthetic analog resulting from transesterification of 1 and 2 also obtained 3ß,20S-dihydroxy-dammar-24-en (4) and 20S,24S-epoxy-3ß,25-dihydroxydammarane (5), respectively. The cytotoxic effect of all isolated and synthetic analog compounds was evaluated using PrestoBlue reagent against MCF-7 breast cancer cell and B16-F10 melanoma cell lines. The 20S-hydroxydammar-24-en-3-on (3) showed the strongest activity against MCF-7 breast cancer and B16-F10 melanoma cell, indicating that the ketone group at C-3 in 3 plays an essential role in the cytotoxicity of dammarane-type triterpenoid. On the other hand, compounds 1 and 2 had very weak cytotoxic activity against the two cell lines, indicating the presence of fatty acid, significantly decreasing cytotoxic activity. This showed the significance of the discovery to investigate the essential structural feature in dammarane-type triterpenoid, specifically for the future development of anticancer drugs.


Subject(s)
Aglaia , Antineoplastic Agents , Breast Neoplasms , Melanoma , Meliaceae , Triterpenes , Antineoplastic Agents/pharmacology , Esters , Female , Humans , Ketones , Molecular Structure , Oleic Acid , Plant Bark , Triterpenes/chemistry , Triterpenes/pharmacology , Dammaranes
8.
Molecules ; 26(7)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916423

ABSTRACT

A total of fourteen pyrazoline derivatives were synthesized through cyclo-condensation reactions by chalcone derivatives with different types of semicarbazide. These compounds were characterized by IR, 1D-NMR (1H, 13C and Distortionless Enhancement by Polarization Transfer - DEPT-135) and 2D-NMR (COSY, HSQC and HMBC) as well as mass spectroscopy analysis (HRMS). The synthesized compounds were tested for their antituberculosis activity against Mycobacterium tuberculosis H37Ra in vitro. Based on this activity, compound 4a showed the most potent inhibitory activity, with a minimum inhibitory concentration (MIC) value of 17 µM. In addition, six other synthesized compounds, 5a and 5c-5g, exhibited moderate activity, with MIC ranges between 60 µM to 140 µM. Compound 4a showed good bactericidal activity with a minimum bactericidal concentration (MBC) value of 34 µM against Mycobacterium tuberculosis H37Ra. Molecular docking studies for compound 4a on alpha-sterol demethylase was done to understand and explore ligand-receptor interactions, and to hypothesize potential refinements for the compound.


Subject(s)
14-alpha Demethylase Inhibitors/chemical synthesis , Antitubercular Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , Pyrazoles/chemical synthesis , Semicarbazides/chemical synthesis , Sterol 14-Demethylase/chemistry , 14-alpha Demethylase Inhibitors/pharmacology , Antitubercular Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalytic Domain , Fluconazole/chemistry , Fluconazole/pharmacology , Isoniazid/chemistry , Isoniazid/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/growth & development , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Pyrazoles/pharmacology , Semicarbazides/pharmacology , Sterol 14-Demethylase/metabolism , Structural Homology, Protein , Thermodynamics
9.
Molecules ; 24(22)2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31717690

ABSTRACT

A series of 2-methoxypyridine-3-carbonitrile (5a-i)-bearing aryl substituents were successfully synthesized in good yields by the condensation of chalcones (4a-i) with malononitrile in basic medium. The condensation process, in most cases, offers a route to a variety of methoxypyridine derivatives (6a-g) as side products in poor yields. All new compounds were fully characterized using different spectroscopic methods. Mass ESI-HMRS measurements were also performed. Furthermore, these compounds were screened for their in vitro cytotoxicity activities against three cancer cell lines; namely, those of the liver (line HepG2), prostate (line DU145) and breast (line MBA-MB-231). The cytotoxicity assessment revealed that compounds 5d, 5g, 5h and 5i exhibit promising antiproliferative effects (IC50 1-5 µM) against those three cancer cell lines.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Chemistry Techniques, Synthetic , Structure-Activity Relationship , Cell Line, Tumor , Cell Survival/drug effects , Humans , Magnetic Resonance Spectroscopy , Molecular Structure
10.
Molecules ; 19(2): 1732-47, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24492595

ABSTRACT

A phytochemical investigation of the methanolic extract of the bark of Endiandra kingiana led to the isolation of seven new tetracyclic endiandric acid analogues, kingianic acids A-G (1-7), together with endiandric acid M (8), tsangibeilin B (9) and endiandric acid (10). Their structures were determined by 1D- and 2D-NMR analysis in combination with HRMS experiments. The structure of compounds 9 and 10 were confirmed by single-crystal X-ray diffraction analysis. These compounds were screened for Bcl-xL and Mcl-1 binding affinities and cytotoxic activity on various cancer cell lines. Compound 5 showed moderate cytotoxic activity against human colorectal adeno-carcinoma (HT-29) and lung adenocarcinoma epithelial (A549) cell lines, with IC50 values in the range 15-17 µM, and compounds 3, 6 and 9 exhibited weak binding affinity for the anti-apoptotic protein Mcl-1.


Subject(s)
Carboxylic Acids/chemistry , Lauraceae/chemistry , Molecular Structure , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Drug Screening Assays, Antitumor , HT29 Cells , Humans , Plant Extracts/pharmacology , X-Ray Diffraction
11.
RSC Adv ; 14(34): 25042-25047, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39135974

ABSTRACT

Steroid groups isolated from many plants are known to play a significant role in various biological systems. Therefore, this research aimed to analyze two novel pregnane steroids, pachylenone A (1) and pachylenone B (2), isolated from Aglaia pachyphylla Miq. The cytotoxicity of the steroids was evaluated against MCF-7 breast cancer cell lines with other known steroid compounds, namely 5α-dihydroprogesterone (3), GSD-8 (4), trans-5α-pregn-l7(20)-en-3,16-dion (5), 20ß-hydroxy-5αH-pregnan-3-one (6), 3ß-hydroxy-5α-pregnan-20-one (7), aglaiasterol B (8), and 2ß,3ß-dihydroxypregnan-16-one (9). Meanwhile, structural elucidation was achieved through different spectroscopic methods including one and two-dimensional NMR, as well as mass spectroscopy and quantum chemical calculations (TD-DFT and NMR DP4+ probability). The cytotoxic effects of steroid compounds (1-9) on MCF-7 lines were also examined. The results showed that compound 8 had the strongest activity with an IC50 value of 228 µM, followed by compound 6 (IC50 568,76 µM), and pachylenone A (1) (IC50 768.73 µM). As a recommendation for future research, other activities of these compounds should be evaluated.

12.
J Nat Med ; 78(3): 558-567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38517622

ABSTRACT

A total of five new mexicanolides (1-5), namely alliaxylines A-E, together with two known limonoids 6 and 7, were isolated and identified from Dysoxylum alliaceum (Blume) Blume ex. A.Juss. (Meliaceae). The structures of these compounds were elucidated based on extensive spectroscopic analyses, including HR-ESI-MS, UV, IR, 1D, and 2D NMR, as well as theoretical stimulation of NMR shifts with the DP4 + algorithm. Consequently, this study aimed to examine cytotoxic activities of these compounds against MCF-7 and A549 cell lines. The results implied that compound 2 was the most potent against the two tested cells, with IC50 values of 34.95 ± 0.21 and 44.39 ± 1.03 µM.


Subject(s)
Limonins , Meliaceae , Plant Bark , Humans , Meliaceae/chemistry , Plant Bark/chemistry , Limonins/chemistry , Limonins/pharmacology , Limonins/isolation & purification , Molecular Structure , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , MCF-7 Cells , A549 Cells , Cell Line, Tumor , Magnetic Resonance Spectroscopy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Stems/chemistry
13.
Fitoterapia ; 174: 105873, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417682

ABSTRACT

Diabetes mellitus stands as a metabolic ailment marked by heightened blood glucose levels due to inadequate insulin secretion. The primary aims of this investigative inquiry encompassed the isolation of phytochemical components from the bark of Kopsia teoi, followed by the assessment of their α-amylase inhibition. The phytochemical composition of the K. teoi culminated in the discovery of a pair of new indole alkaloids; which are 16-epi-deacetylakuammiline N(4)-methylene chloride (akuammiline) (1), and N(1)-methoxycarbonyl-11-methoxy-12-hydroxy-Δ14-17-kopsinine (aspidofractinine) (2), together with five known compounds i.e. kopsiloscine G (aspidofractinine) (3), akuammidine (sarpagine) (4), leuconolam (aspidosperma) (5), N-methoxycarbonyl-12-methoxy-Δ16, 17-kopsinine (aspidofractinine) (6), and kopsininate (aspidofractinine) (7). All compounds were determined via spectroscopic analyses. The in vitro evaluation against α-amylase showed good inhibitory activities for compounds 5-7 with the inhibitory concentration (IC50) values of 21.7 ± 1.2, 34.1 ± 0.1, and 30.0 ± 0.8 µM, respectively compared with the reference acarbose (IC50 = 34.4 ± 0.1 µM). The molecular docking outputs underscored the binding interactions of compounds 5-7 ranging from -8.1 to -8.8 kcal/mol with the binding sites of α-amylase. Consequently, the outcomes highlighted the anti-hyperglycemic attributes of isolates from K. teoi.


Subject(s)
Apocynaceae , Secologanin Tryptamine Alkaloids , Molecular Docking Simulation , alpha-Amylases , Molecular Structure , Indole Alkaloids , Phytochemicals/pharmacology , Apocynaceae/chemistry
14.
RSC Adv ; 14(11): 7684-7698, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38444963

ABSTRACT

New phenylisoxazole quinoxalin-2-amine hybrids 5a-i were successfully synthesised with yields of 53-85% and characterised with various spectroscopy methods. The synthesised hybrids underwent in vitro α-amylase and α-glucosidase inhibitory assays, with acarbose as the positive control. Through the biological study, compound 5h exhibits the highest α-amylase inhibitory activity with IC50 = 16.4 ± 0.1 µM while compounds 5a-c, 5e and 5h exhibit great potential as α-glucosidase inhibitors, with 5c being the most potent (IC50 = 15.2 ± 0.3 µM). Among the compounds, 5h exhibits potential as a dual inhibitor for both α-amylase (IC50 = 16.4 ± 0.1 µM) and α-glucosidase (IC50 = 31.6 ± 0.4 µM) enzymes. Through the molecular docking studies, the inhibition potential of the selected compounds is supported. Compound 5h showed important interactions with α-amylase enzyme active sites and exhibited the highest binding energy of -8.9 ± 0.10 kcal mol-1, while compound 5c exhibited the highest binding energy of -9.0 ± 0.20 kcal mol-1 by forming important interactions with the α-glucosidase enzyme active sites. The molecular dynamics study showed that the selected compounds exhibited relative stability when binding with α-amylase and α-glucosidase enzymes. Additionally, compound 5h demonstrated a similar pattern of motion and mechanism of action as the commercially available miglitol.

15.
Int J Mol Sci ; 14(12): 23369-89, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24287912

ABSTRACT

Resveratrol, a natural stilbene found in grapes and wines exhibits a wide range of pharmacological properties. Resveratrol is also known as a good chemopreventive agent for inhibiting carcinogenesis processes that target kinases, cyclooxygenases, ribonucleotide reductase and DNA polymerases. A total of 19 analogues with an amide moiety were synthesized and the cytotoxic effects of the analogues on a series of human cancer cell lines are reported. Three compounds 6d, 6i and 6n showed potent cytotoxicity against prostate cancer DU-145 (IC50=16.68 µM), colon cancer HT-29 (IC50=7.51 µM) and breast cancer MCF-7 (IC50=21.24 µM), respectively, which are comparable with vinblastine. The resveratrol analogues were synthesized using the Heck method.


Subject(s)
Anticarcinogenic Agents/chemical synthesis , Drug Design , Stilbenes/chemistry , Anticarcinogenic Agents/chemistry , Anticarcinogenic Agents/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , HT29 Cells , Humans , MCF-7 Cells , Resveratrol , Stilbenes/chemical synthesis , Stilbenes/toxicity
16.
Comput Biol Chem ; 106: 107938, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37542847

ABSTRACT

In our effort to develop potent anti-hyperglycemic compounds with inhibitory activity against α-amylase and α-glucosidase, a series of novel quinoxaline-isoxazole moieties were synthesized. The novel quinoxaline-isoxazole derivatives were assessed in vitro for their anti-hyperglycemic activities on α-amylase and α-glucosidase inhibitions. The results revealed promising IC50 values compared to acarbose as a positive control for α-amylase and α-glucosidase. Among them, N-Ethyl-7-chloro-3-((3-phenylisoxazol-5-yl)methoxy)quinoxalin-2-amine 5b showed dual inhibitory with IC50 of 24.0 µM for α-amylase and 41.7 µM for α-glucosidase. In addition, N-Ethyl-7-methoxy-3-((3-(2-chlorophenyl)isoxazol-5-yl)methoxy)quinoxalin-2-amine 5j also had dual bioactivities against α-amylase and α-glucosidase with IC50 of 17.0 and 40.1 µM, respectively. Nevertheless, two more compounds N-Ethyl-7-cyano-3-((3-phenylisoxazol-5-yl)methoxy)quinoxaline-2-amine 5e showed strong mono-inhibition for α-glucosidase with IC50 of 16.6 µM followed by N-Ethyl-7-methoxy-3-((3-phenylisoxazol-5-yl)methoxy)quinoxalin-2-amine 5 f with IC50 of 18.6 µM. The molecular docking study for α-glucosidase inhibitor provided the binding energy ranging from 8.3 to 9.1 kcal/mol and α-amylase inhibitor showed the binding energy score at 8.4 and 8.5 kcal/mol. The dual inhibitions nature of 5b and 5j were further analyzed and confirmed via molecular dynamics including the stability of the compound, interaction energy, binding free energy, and the interaction residue analysis using the MM-GBSA approach. The results showed that compound 5j was the most potent compound. Lastly, the drug-likeness properties were also evaluated with all synthesized compounds 5a-5j and the results reveal that all potent compounds meet Lipinski's rules of five.


Subject(s)
Quinoxalines , alpha-Glucosidases , Molecular Docking Simulation , alpha-Glucosidases/metabolism , Quinoxalines/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , alpha-Amylases , Molecular Structure , Structure-Activity Relationship
17.
Materials (Basel) ; 16(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37444824

ABSTRACT

This paper reports the optical properties of zinc oxide nanofilm fabricated by using organic natural products from Salvia officinalis leaves (SOL) extract and discusses the effect of the nanocrystal (NC) structure (nanoyarn and nanomat-like structure) on nanofilm optical properties. The surface-active layer of the nanofilm of ZnO nanoparticles (ZnO NPs) was passivated with natural organic SOL leaves hydrothermally, then accumulated on zinc oxide nanorods (ZnO NRs). The nanofilms were fabricated (with and without PEO) on glass substrate (at 85 °C for 16 h) via chemical solution deposition (CSD). The samples were characterized by UV-vis, PL, FESEM, XRD, and TEM measurements. TEM micrographs confirmed the nucleation of ZnO NPs around 4 nm and the size distribution at 1.2 nm of ZnO QDs as an influence of the quantum confinement effect (QCE). The nanofilms fabricated with SOL surfactant (which works as a capping agent for ZnO NPs) represent distinct optoelectronic properties when compared to bulk ZnO. FESEM images of the nanofilms revealed nanoyarn and nanomat-like structures resembling morphologies. The XRD patterns of the samples exhibited the existence of ZnO nanocrystallites (ZnO NCs) with (100), (002), and (101) growth planes. The nanofilms fabricated represented a distinct optical property through absorption and broad emission, as the optical energy band gap reduced as the nanofilms annealed (at 120 ℃). Based on the obtained results, it was established that phytochemicals extracted from organic natural SOL leaves have a distinct influence on zoic oxide nanofilm fabrication, which may be useful for visible light spectrum trapping. The nanofilms can be used in photovoltaic solar cell applications.

18.
Nat Prod Res ; : 1-8, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38009213

ABSTRACT

Phytochemical investigation on the bark of E. kingiana plant afforded ten compounds, including six polyketides namely kingianin A 1, kingianin B 2, kingianin E 3, kingianin F 4, kingianin K 5 and kingianin L 6, three endiandric acids; kingianic acid A 7, tsangibeilin B 8 and endiandric acid M 9, and one sesquiterpene; daibuoxide 10. All compounds were separated as racemic mixture by recycling high-performance liquid chromatography (RHPLC), except for daibuoxide. Their structures were elucidated by detailed spectroscopic and comparative literature data analysis. This is the first report on the presence of the sesquiterpene; daibuoxide in Endiandra genus. In vitro enzymatic bio-evaluation of the isolated compounds against α-amylase and α-glucosidase showed that 4 demonstrated the best α-amylase and α-glucosidase inhibitory activity with IC50 values of 181.54 ± 6.27 µg/mL and 237.87 ± 0.07 µg/mL, respectively. In addition, molecular docking analysis confirmed the α-amylase and α-glucosidase inhibitory activities demonstrated by 4.

19.
Phytochemistry ; 205: 113477, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36283447

ABSTRACT

Two undescribed sesquiterpenoids, namely dysoticans A and B, and three undescribed sesquiterpenoid dimers, namely dysoticans C-E, together with six analogs, were isolated from the stem bark of Dysoxylum parasiticum (Osbeck) Kosterm. (Meliaceae), growing in West Java, Indonesia. Their structures were elucidated based on extensive spectroscopic analysis and theoretical simulations of ECD spectra and 13C NMR shifts. Dysoticans A and B possessed undescribed cadinanes with minor modifications, while C and D featured unprecedented pseudo-sesquiterpenoid dimers through O-ether linkages of cadinanes and guaianes, respectively. Dysotican E was also characterized as the true-sesquiterpenoid dimer featuring eudesmane-germacrene hybrid framework from the Meliaceae family. Furthermore, A-C and E showed moderate activities against the human breast cancer MCF-7 and cervical cancer HeLa cell lines with IC50 values ranging from 22.15 to 45.14 µM. D selectively exhibited significant cytotoxicity against the HeLa cell line with an IC50 value of 13.00 ± 0.13 µM.


Subject(s)
HeLa Cells , Humans , Indonesia
20.
BMC Complement Altern Med ; 12: 179, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-23043547

ABSTRACT

BACKGROUND: Oral cancers although preventable, possess a low five-year survival rate which has remained unchanged over the past three decades. In an attempt to find a more safe, affordable and effective treatment option, we describe here the use of 1'S-1'-acetoxychavicol acetate (ACA), a component of Malaysian ginger traditionally used for various medicinal purposes. METHODS: Whether ACA can inhibit the growth of oral squamous cell carcinoma (SCC) cells alone or in combination with cisplatin (CDDP), was explored both in vitro using MTT assays and in vivo using Nu/Nu mice. Occurrence of apoptosis was assessed using PARP and DNA fragmentation assays, while the mode of action were elucidated through global expression profiling followed by Western blotting and IHC assays. RESULTS: We found that ACA alone inhibited the growth of oral SCC cells, induced apoptosis and suppressed its migration rate, while minimally affecting HMEC normal cells. ACA further enhanced the cytotoxic effects of CDDP in a synergistic manner as suggested by combination index studies. We also found that ACA inhibited the constitutive activation of NF-κB through suppression of IKKα/ß activation. Human oral tumor xenografts studies in mice revealed that ACA alone was as effective as CDDP in reducing tumor volume, and further potentiated CDDP effects when used in combination with minimal body weight loss. The effects of ACA also correlated with a down-regulation of NF-κB regulated gene (FasL and Bim), including proinflammatory (NF-κB and COX-2) and proliferative (cyclin D1) biomarkers in tumor tissue. CONCLUSION: Overall, our results suggest that ACA inhibits the growth of oral SCC and further potentiates the effect of standard CDDP treatment by modulation of proinflammatory microenvironment. The current preclinical data could form the basis for further clinical trials to improve the current standards for oral cancer care using this active component from the Malaysian ginger.


Subject(s)
Benzyl Alcohols/therapeutic use , Carcinoma, Squamous Cell/drug therapy , Cisplatin/therapeutic use , Inflammation Mediators/metabolism , Inflammation/metabolism , Mouth Neoplasms/drug therapy , Zingiberaceae/chemistry , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols , Apoptosis/drug effects , Benzyl Alcohols/pharmacology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Movement/drug effects , Cisplatin/pharmacology , Drug Synergism , Humans , Inflammation/genetics , Male , Mice , Mice, Nude , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , NF-kappa B/metabolism , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL