Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
New Phytol ; 221(3): 1609-1618, 2019 02.
Article in English | MEDLINE | ID: mdl-30368824

ABSTRACT

Flowering plants serve as a powerful model for studying the evolution of nuclear genome size (GS) given the tremendous GS variation that exists both within and across angiosperm lineages. Helianthus sunflowers consist of c. 50 species native to North America that occupy diverse habitats and vary in ploidy level. In the current study, we generated a comprehensive GS database for 49 Helianthus species using flow cytometric approaches. We examined variability across the genus and present a comparative phylogenetic analysis of GS evolution in diploid Helianthus species. Results demonstrated that different clades of diploid Helianthus species showed evolutionary patterns of GS contraction, expansion and relative stasis, with annual diploid species evolving smaller GS with the highest rate of evolution. Phylogenetic comparative analyses of diploids revealed significant negative associations of GS with temperature seasonality and cell production rate, indicating that the evolution of larger GS in Helianthus diploids may be more permissible in habitats with longer growing seasons where selection for more rapid growth may be relaxed. The Helianthus GS database presented here and corresponding analyses of environmental and phenotypic correlates will facilitate ongoing and future research on the ultimate drivers of GS evolution in this well-studied North American plant genus.


Subject(s)
Cell Nucleus/genetics , Genetic Variation , Genome Size , Genome, Plant , Helianthus/genetics , Phylogeny , Diploidy , Environment , Least-Squares Analysis , Regression Analysis
2.
Mol Ecol ; 27(1): 233-247, 2018 01.
Article in English | MEDLINE | ID: mdl-28612961

ABSTRACT

Crop-wild hybridization occurs in numerous plant species and could alter the genetic structure and evolutionary dynamics of wild populations. Studying crop-derived alleles in wild populations is also relevant to assessing/mitigating the risks associated with transgene escape. To date, crop-wild hybridization has generally been examined via short-term studies, typically within a single generation, focusing on few traits or genetic markers. Little is known about patterns of selection on crop-derived alleles over multiple generations, particularly at a genome-wide scale. Here, we documented patterns of natural selection in an experimental crop × wild sunflower population that was allowed to evolve under natural conditions for two generations at two locations. Allele frequencies at a genome-wide collection of SNPs were tracked across generations, and a common garden experiment was conducted to compare trait means between generations. These data allowed us to identify instances of selection on crop-derived alleles/traits and, in concert with QTL mapping results, test for congruence between our genotypic and phenotypic results. We found that natural selection overwhelmingly favours wild alleles and phenotypes. However, crop alleles in certain genomic regions can be favoured, and these changes often occurred in parallel across locations. We did not, however, consistently observe close agreement between our genotypic and phenotypic results. For example, when a trait evolved towards the wild phenotype, wild QTL alleles associated with that trait did not consistently increase in frequency. We discuss these results in the context of crop allele introgression into wild populations and implications for the management of GM crops.


Subject(s)
Biological Evolution , Crops, Agricultural/genetics , Gene Frequency/genetics , Genome, Plant , Helianthus/genetics , Hybridization, Genetic , Chromosome Mapping , Domestication , Genotype , Phenotype , Quantitative Trait Loci/genetics
3.
Ann Bot ; 121(7): 1309-1318, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29534147

ABSTRACT

Background and Aims: Genome size is hypothesized to affect invasiveness in plants. Key evidence comes from a previous study of invasive eastern North American populations of the grass Phalaris arundinacea: invasive genotypes with smaller genomes had higher growth rates, and genome sizes were smaller in the invasive vs. native range. This study aimed to re-investigate those patterns by examining a broader range of North American populations and by employing the modern best-practice protocol for plant genome size estimation in addition to the previously used protocol. Methods: Genome sizes were measured using both internal and pseudo-internal standardization protocols for 20 invasive and nine native range accessions of P. arundinacea. After a round of vegetative propagation to reduce maternal environmental effects, growth (stem elongation) rates of these accessions were measured in the greenhouse. Key Results: Using the best-practice protocol, there was no evidence of a correlation between genome size and growth rates (P = 0.704), and no evidence for differences in genome sizes of invasive and native range accessions (P > 0.353). However, using the older genome size estimation protocol, both relationships were significant (reproducing the results of the previous study). Conclusions: Genome size reduction has not driven increased invasiveness in a broad sample of North American P. arundinacea. Further, inappropriate genome size estimation techniques can create spurious correlations between genome size and plant traits such as growth rate. Valid estimation is vital to progress in understanding the potentially widespread effects of genome size on biological processes and patterns.


Subject(s)
Genome, Plant/genetics , Introduced Species , Phalaris/genetics , DNA, Plant/genetics , Genetic Association Studies , Phalaris/growth & development
4.
Mol Ecol ; 23(17): 4188-91, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25155715

ABSTRACT

From California sequoia, to Australian eucalyptus, to the outstanding diversity of Amazonian forests, trees are fundamental to many processes in ecology and evolution. Trees define the communities that they inhabit, are host to a multiplicity of other organisms and can determine the ecological dynamics of other plants and animals. Trees are also at the heart of major patterns of biodiversity such as the latitudinal gradient of species diversity and thus are important systems for studying the origin of new plant species. Although the role of trees in community assembly and ecological succession is partially understood, the origin of tree diversity remains largely opaque. For instance, the relative importance of differing habitats and phenologies as barriers to hybridization between closely related species is still largely uncharacterized in trees. Consequently, we know very little about the origin of trees species and their integrity. Similarly, studies on the interplay between speciation and tree community assembly are in their infancy and so are studies on how processes like forest maturation modifies the context in which reproductive isolation evolves. In this issue of Molecular Ecology, Lindtke et al. (2014) and Lagache et al. (2014) overcome some traditional difficulties in studying mating systems and sexual isolation in the iconic oaks and poplars, providing novel insights about the integrity of tree species and on how ecology leads to variation in selection on reproductive isolation over time and space.


Subject(s)
Genetics, Population , Hybridization, Genetic , Populus/genetics , Quercus/growth & development , Quercus/genetics , Selection, Genetic
5.
G3 (Bethesda) ; 13(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-36966434

ABSTRACT

Red alder (Alnus rubra Bong.) is an ecologically significant and important fast-growing commercial tree species native to western coastal and riparian regions of North America, having highly desirable wood, pigment, and medicinal properties. We have sequenced the genome of a rapidly growing clone. The assembly is nearly complete, containing the full complement of expected genes. This supports our objectives of identifying and studying genes and pathways involved in nitrogen-fixing symbiosis and those related to secondary metabolites that underlie red alder's many interesting defense, pigmentation, and wood quality traits. We established that this clone is most likely diploid and identified a set of SNPs that will have utility in future breeding and selection endeavors, as well as in ongoing population studies. We have added a well-characterized genome to others from the order Fagales. In particular, it improves significantly upon the only other published alder genome sequence, that of Alnus glutinosa. Our work initiated a detailed comparative analysis of members of the order Fagales and established some similarities with previous reports in this clade, suggesting a biased retention of certain gene functions in the vestiges of an ancient genome duplication when compared with more recent tandem duplications.


Subject(s)
Alnus , Alnus/metabolism , Diploidy , Plant Breeding , Symbiosis , Trees
6.
Nature ; 440(7083): 524-7, 2006 Mar 23.
Article in English | MEDLINE | ID: mdl-16554818

ABSTRACT

Many botanists doubt the existence of plant species, viewing them as arbitrary constructs of the human mind, as opposed to discrete, objective entities that represent reproductively independent lineages or 'units of evolution'. However, the discreteness of plant species and their correspondence with reproductive communities have not been tested quantitatively, allowing zoologists to argue that botanists have been overly influenced by a few 'botanical horror stories', such as dandelions, blackberries and oaks. Here we analyse phenetic and/or crossing relationships in over 400 genera of plants and animals. We show that although discrete phenotypic clusters exist in most genera (> 80%), the correspondence of taxonomic species to these clusters is poor (< 60%) and no different between plants and animals. Lack of congruence is caused by polyploidy, asexual reproduction and over-differentiation by taxonomists, but not by contemporary hybridization. Nonetheless, crossability data indicate that 70% of taxonomic species and 75% of phenotypic clusters in plants correspond to reproductively independent lineages (as measured by postmating isolation), and thus represent biologically real entities. Contrary to conventional wisdom, plant species are more likely than animal species to represent reproductively independent lineages.


Subject(s)
Genetic Speciation , Plants/classification , Analysis of Variance , Animals , Hybridization, Genetic , Models, Statistical , Phenotype , Plants/genetics , Ploidies , Reproduction , Species Specificity
7.
Curr Opin Genet Dev ; 17(6): 513-8, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17933508

ABSTRACT

Hybridization in plants and animals is more common and has more complex outcomes than previously realized. Genome-wide analyses of introgression in organisms ranging from oaks to sunflowers to fruit flies show that a substantial fraction of their genomes are permeable to alleles from related species. Hybridization can lead to rapid genomic changes, including chromosomal rearrangements, genome expansion, differential gene expression, and gene silencing, some of which are mediated by transposable elements. These genomic changes may lead to beneficial new phenotypes, and selection for fertility and ecological traits may in turn alter genome structure. Dramatic increases in the availability of genomic tools will produce a new understanding of the genetic nature of species and will resolve a century-old debate over the basis of hybrid vigor, while the natural recombinants found in hybrid zones will permit genetic mapping of species differences and reproductive barriers in nonmodel organisms.


Subject(s)
Genetic Speciation , Genomics , Hybridization, Genetic , Hybrid Vigor
8.
Curr Biol ; 16(15): R583-4, 2006 Aug 08.
Article in English | MEDLINE | ID: mdl-16890513

ABSTRACT

Genetically modified Agrostis stolonifera has escaped from cultivation. For the first time, a herbicide-resistant perennial weed has established itself in wild populations.


Subject(s)
Agrostis/genetics , Agrostis/physiology , Demography , Plants, Genetically Modified , Agrostis/drug effects , Drug Resistance/genetics , Herbicides/toxicity , Transgenes/genetics
9.
PLoS Genet ; 7(6): e1002092, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21695239

Subject(s)
Genetic Drift , Genome , Phylogeny
10.
Ecol Lett ; 11(10): 1082-91, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18643842

ABSTRACT

Despite the recent renaissance in studies of ecological speciation, the connection between ecological selection and the evolution of reproductive isolation remains tenuous. We tested whether habitat adaptation of cytoplasmic genomes contributes to the maintenance of reproductive barriers in hybridizing sunflower species, Helianthus annuus and Helianthus petiolaris. We transplanted genotypes of the parental species, reciprocal F1 hybrids and all eight possible backcross combinations of nuclear and cytoplasmic genomes into the contrasting xeric and mesic habitats of the parental species. Analysis of survivorship across two growing seasons revealed that the parental species' cytoplasms were strongly locally adapted and that cytonuclear interactions (CNIs) significantly affected the fitness and architecture of hybrid plants. A significant fraction of the CNIs have transgenerational effects, perhaps due to divergence in imprinting patterns. Our results suggest a common means by which ecological selection may contribute to speciation and have significant implications for the persistence of hybridizing species.


Subject(s)
Cytoplasm/genetics , Genome, Plant , Helianthus/genetics , Selection, Genetic , Adaptation, Biological/genetics , Analysis of Variance , Crosses, Genetic , Ecology , Ecosystem , Fertility/genetics , Genetic Speciation , Genetics, Population , Genotype , Hybridization, Genetic , Models, Genetic , Quantitative Trait, Heritable , Species Specificity
11.
Ecology ; 87(11): 2736-45, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17168018

ABSTRACT

Recent evolutionary models of range limits emphasize the importance of ecological and demographic factors operating at species' margins. This study aims to establish the ecological context driving population boundaries in Gilia tricolor, a native California annual restricted to distinct habitat patches in the coastal range of California. A transplant experiment in one hillside G. tricolor population examined the roles of competition and soil chemistry as well as litter and biomass accumulation in setting local population boundaries. Results indicate that boundaries are maintained primarily by inhibition of seedling emergence by vegetation and litter, and that upslope and downslope population boundaries are heterogeneous in litter biomass and transplant performance. Consistent emergence inhibition in undisturbed, peripheral sites maintains limits to the distribution of G. tricolor in this population. Fine-scaled ecological heterogeneity and heterogeneous boundary conditions likely play important roles in limiting adaptation and subsequent range expansion at population boundaries in G. tricolor.


Subject(s)
Ecosystem , Magnoliopsida/physiology , Biomass , California , Fertility , Flowers/physiology , Soil/standards , Survival Analysis
12.
Evolution ; 59(9): 1936-44, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16261731

ABSTRACT

Chromosome doubling plays an important role in generating new species of flowering plants. However, reproductive incompatibilities between newly formed tetraploid plants and their diploid progenitors are expected to create a significant barrier to the persistence and establishment of neopolyploid populations. Ecological differentiation can reduce this barrier via prezygotic isolation arising from spatial separation. Alternatively, superior viability or fecundity of neotetraploid plants might compensate for the reproductive cost of incompatible pollen from diploid neighbors. The performance of plants of both cytotypes can be assessed in their respective habitats through reciprocal transplants, although such experiments have not been used previously in the study of tetraploid speciation. We used a series of seed and seedling transplant experiments to assess ecological differentiation and competitive ability during early establishment phases for tetraploid and diploid forms of the snow buttercup (Ranunculus adoneus). At two sites, seeds from diploids and tetraploids had similar germination probabilities. Tetraploid snow buttercup seedlings had a significant growth advantage in a controlled environment chamber experiment. However, in the field diploid and tetraploid buttercup seedlings did not differ consistently in survival or growth, nor did the two cytotypes show reciprocal advantages in performance, as expected if ecological differentiation has occurred. At the seed and seedling stages, neither niche differentiation nor tetraploid competitive superiority appears sufficient to explain neotetraploid success in the presence of their diploid progenitors.


Subject(s)
Adaptation, Biological , Environment , Polyploidy , Ranunculus/growth & development , Ranunculus/genetics , Colorado , Species Specificity
13.
Evolution ; 66(5): 1459-73, 2012 May.
Article in English | MEDLINE | ID: mdl-22519784

ABSTRACT

In several cases, estimates of gene flow between species appear to be higher than we might predict given the strength of interspecific barriers separating these species pairs. However, as far as we are aware, detailed measurements of reproductive isolation have not previously been compared with a coalescent-based assessment of gene flow. Here, we contrast these two measures in two species of sunflower, Helianthus annuus and H. petiolaris. We quantified the total reproductive barrier strength between these species by compounding the contributions of the following prezygotic and postzygotic barriers: ecogeographic isolation, reproductive asynchrony, niche differentiation, pollen competition, hybrid seed formation, hybrid seed germination, hybrid fertility, and extrinsic postzygotic isolation. From this estimate, we calculated the probability that a reproductively successful hybrid is produced: estimates of P(hyb) range from 10(-4) to 10(-6) depending on the direction of the cross and the degree of independence among reproductive barriers. We then compared this probability with population genetic estimates of the per generation migration rate (m). We showed that the relatively high levels of gene flow estimated between these sunflower species (N(e) m= 0.34-0.76) are mainly due to their large effective population sizes (N(e) > 10(6)). The interspecific migration rate (m) is very small (<10(-7)) and an order of magnitude lower than that expected based on our reproductive barrier strength estimates. Thus, even high levels of reproductive isolation (>0.999) may produce genomic mosaics.


Subject(s)
Ecosystem , Helianthus/growth & development , Helianthus/genetics , Reproductive Isolation , Gene Flow , Genetic Speciation , Germination , Helianthus/classification , Helianthus/physiology , Hybridization, Genetic , Reproduction , Time Factors , United States
14.
Evolution ; 64(7): 2097-109, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20148953

ABSTRACT

Genome sizes vary widely among species, but comprehensive explanations for the emergence of this variation have not been validated. Lynch and Conery (2003) hypothesized that genome expansion is maladaptive, and that lineages with small effective population size (N(e)) evolve larger genomes than those with large N(e) as a consequence of the lowered efficacy of natural selection in small populations. In addition, mating systems likely affect genome size evolution via effects on both N(e) and the spread of transposable elements (TEs). We present a comparative analysis of the effects of N(e) and mating system on genome size evolution in seed plants. The dataset includes 205 species with monoploid genome size estimates (corrected for recent polyploidy) ranging from 2Cx = 0.3 to 65.9 pg. The raw data exhibited a strong positive relationship between outcrossing and genome size, a negative relationship between N(e) and genome size, but no detectable N(e)x outcrossing interaction. In contrast, phylogenetically independent contrast analyses found only a weak relationship between outcrossing and genome size and no relationship between N(e) and genome size. Thus, seed plants do not support the Lynch and Conery mechanism of genome size evolution. Further work is needed to disentangle contrasting effects of mating systems on the efficacy of selection and TE transmission.


Subject(s)
Evolution, Molecular , Genetic Drift , Genome, Plant/genetics , Plants/genetics , Models, Genetic , Phylogeny , Population Density , Regression Analysis , Reproduction/physiology , Species Specificity
15.
Mol Ecol ; 17(2): 666-77, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18179437

ABSTRACT

The strength and extent of gene flow from crops into wild populations depends, in part, on the fitness of the crop alleles, as well as that of alleles at linked loci. Interest in crop-wild gene flow has increased with the advent of transgenic plants, but nontransgenic crop-wild hybrids can provide case studies to understand the factors influencing introgression, provided that the genetic architecture and the fitness effects of loci are known. This study used recombinant inbred lines (RILs) generated from a cross between crop and wild sunflowers to assess selection on domestication traits and quantitative trait loci (QTL) in two contrasting environments, in Indiana and Nebraska, USA. Only a small fraction of plants (9%) produced seed in Nebraska, due to adverse weather conditions, while the majority of plants (79%) in Indiana reproduced. Phenotypic selection analysis found that a mixture of crop and wild traits were favoured in Indiana (i.e. had significant selection gradients), including larger leaves, increased floral longevity, larger disk diameter, reduced ray flower size and smaller achene (seed) mass. Selection favouring early flowering was detected in Nebraska. QTLs for fitness were found at the end of linkage groups six (LG6) and nine (LG9) in both field sites, each explaining 11-12% of the total variation. Crop alleles were favoured on LG9, but wild alleles were favoured on LG6. QTLs for numerous domestication traits overlapped with the fitness QTLs, including flowering date, achene mass, head number, and disk diameter. It remains to be seen if these QTL clusters are the product of multiple linked genes, or individual genes with pleiotropic effects. These results indicate that crop trait values and alleles may sometimes be favoured in a noncrop environment and across broad geographical regions.


Subject(s)
Crops, Agricultural/genetics , Helianthus/genetics , Quantitative Trait Loci , Selection, Genetic , Alleles , Crosses, Genetic , Hybrid Vigor/genetics , Hybridization, Genetic , Indiana , Nebraska , United States
16.
Mol Ecol ; 16(21): 4423-5, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17850268

ABSTRACT

Where do weeds come from? How do they evolve from nonweedy ancestors? In this issue of Molecular Ecology, Londo and Schaal examine the origin of weedy rice (Oryza sativa) populations in the USA. Analysing nuclear DNA sequence and microsatellite data, they show the importance of parallel evolution, hybridization, gene flow, and migration in the evolution of these weeds.


Subject(s)
Biological Evolution , Oryza/genetics , Gene Flow , Hybridization, Genetic , Microsatellite Repeats , Oryza/anatomy & histology , Oryza/classification , Sequence Analysis, DNA
17.
Am J Bot ; 92(11): 1827-35, 2005 Nov.
Article in English | MEDLINE | ID: mdl-21646100

ABSTRACT

Polyploid speciation is an ongoing, important source of angiosperm diversity. However, the barriers to polyploid speciation and mechanisms of establishment remain poorly understood for all but a few species. Several factors likely to have influenced tetraploid establishment, including barriers to triploid formation, consequences of mixed-ploidy pollen loads, and the reproductive success of the minority cytotype, were examined in snow buttercups (Ranunculus adoneus) through a series of pollination and transplant experiments. Tetraploid snow buttercups do not have stigmatic barriers to pollen from diploid plants, nor does pollen from tetraploid plants have an advantage over pollen from diploids when on tetraploid stigmas. Tetraploid plants transplanted into a diploid population produced 50% fewer seeds than tetraploid plants in a tetraploid population. Intrinsic barriers to triploid formation were relatively weak, but few triploid seeds formed when mixed-ploidy pollen was present. Fecundity of triploid plants was very low, and no tetraploid offspring resulted. These results indicate that in snow buttercups, a triploid plant will contribute 0.8% of the tetraploid seeds of a minority tetraploid plant making it a minor contributor to the demographics of tetraploid establishment. The reproductive costs facing minority cytotype plants may explain the previously observed spatial segregation in snow buttercups.

18.
New Phytol ; 167(2): 623-30, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15998412

ABSTRACT

Hybridization and polyploidy can induce rapid genomic changes, including the gain or loss of DNA, but the magnitude and timing of such changes are not well understood. The homoploid hybrid system in Helianthus (three hybrid-derived species and their two parents) provides an opportunity to examine the link between hybridization and genome size changes in a replicated fashion. Flow cytometry was used to estimate the nuclear DNA content in multiple populations of three homoploid hybrid Helianthus species (Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxus), the parental species (Helianthus annuus and Helianthus petiolaris), synthetic hybrids, and natural hybrid-zone populations. Results confirm that hybrid-derived species have 50% more nuclear DNA than the parental species. Despite multiple origins, hybrid species were largely consistent in their DNA content across populations, although H. deserticola showed significant interpopulation differences. First- and sixth-generation synthetic hybrids and hybrid-zone plants did not show an increase from parental DNA content. First-generation hybrids differed in DNA content according to the maternal parent. In summary, hybridization by itself does not lead to increased nuclear DNA content in Helianthus, and the evolutionary forces responsible for the repeated increases in DNA content seen in the hybrid-derived species remain mysterious.


Subject(s)
DNA, Plant/analysis , DNA, Plant/genetics , Helianthus/genetics , Genome, Plant , Hybridization, Genetic , Polyploidy , Species Specificity
19.
Am J Bot ; 91(11): 1783-8, 2004 Nov.
Article in English | MEDLINE | ID: mdl-21652325

ABSTRACT

Polyploid speciation is an important source of angiosperm diversity. Insights into the origin and establishment of new polyploid species may be gained by studying the distributions of ancestral and derivative cytotypes at multiple spatial scales. Diploid (2n = 16) and tetraploid (2n = 32) snow buttercups (Ranunculus adoneus: Ranunculaceae) occur in the alpine of the central and southern Rocky Mountains. Root-tip squashes and flow cytometry were used to determine the ploidy of 1618 individuals from 35 populations. Samples from 31 of the 35 sites were entirely of one cytotype, either diploid or tetraploid. Diploid and tetraploid snow buttercups have nonoverlapping regional distributions. Where both cytotypes occur on the same site, the two are spatially segregated despite no apparent change in habitat. Triploid snow buttercups were only found at a diploid/tetraploid contact zone, while two hexaploid plants were found in tetraploid populations. Tetraploid establishment once or twice in the history of the species complex could account for the regional distribution of the two cytotypes. Habitat differentiation between cytotypes or reproductive exclusion of minority cytotypes may explain the observed segregation at both microgeographic and regional scales.

SELECTION OF CITATIONS
SEARCH DETAIL