Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Proc Natl Acad Sci U S A ; 115(35): E8116-E8124, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30108146

ABSTRACT

Zeolite-templated carbons (ZTCs) comprise a relatively recent material class synthesized via the chemical vapor deposition of a carbon-containing precursor on a zeolite template, followed by the removal of the template. We have developed a theoretical framework to generate a ZTC model from any given zeolite structure, which we show can successfully predict the structure of known ZTCs. We use our method to generate a library of ZTCs from all known zeolites, to establish criteria for which zeolites can produce experimentally accessible ZTCs, and to identify over 10 ZTCs that have never before been synthesized. We show that ZTCs partition space into two disjoint labyrinths that can be described by a pair of interpenetrating nets. Since such a pair of nets also describes a triply periodic minimal surface (TPMS), our results establish the relationship between ZTCs and schwarzites-carbon materials with negative Gaussian curvature that resemble TPMSs-linking the research topics and demonstrating that schwarzites should no longer be thought of as purely hypothetical materials.

2.
Angew Chem Int Ed Engl ; 59(3): 1087-1092, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31553513

ABSTRACT

COF-1 has a structure with rigid 2D layers composed of benzene and B3 O3 rings and weak van der Waals bonding between the layers. The as-synthesized COF-1 structure contains pores occupied by solvent molecules. A high surface area empty-pore structure is obtained after vacuum annealing. High-pressure XRD and Raman experiments with mesitylene-filled (COF-1-M) and empty-pore COF-1 demonstrate partial amorphization and collapse of the framework structure above 12-15 GPa. The ambient pressure structure of COF-1-M can be reversibly recovered after compression up to 10-15 GPa. Remarkable stability of highly porous COF-1 structure at pressures at least up to 10 GPa is found even for the empty-pore structure. The bulk modulus of the COF-1 structure (11.2(5) GPa) and linear incompressibilities (k[100] =111(5) GPa, k[001] =15.0(5) GPa) were evaluated from the analysis of XRD data and cross-checked against first-principles calculations.

3.
Angew Chem Int Ed Engl ; 57(42): 13780-13783, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30160076

ABSTRACT

A new mesoporous metal-organic framework (MOF; DUT-60) was conceptually designed in silico using Zn4 O6+ nodes, ditopic and tritopic linkers to explore the stability limits of framework architectures with ultrahigh porosity. The robust ith-d topology of DUT-60 provides an average bulk and shear modulus (4.97 GPa and 0.50 GPa, respectively) for this ultra-porous framework, a key prerequisite to suppress pore collapse during desolvation. Subsequently, a cluster precursor approach, resulting in minimal side product formation in the solvothermal synthesis, was used to produce DUT-60, a new crystalline framework with the highest recorded accessible pore volume (5.02 cm3 g-1 ) surpassing all known crystalline framework materials.

4.
Inorg Chem ; 54(20): 10073-80, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26447991

ABSTRACT

In this work, we report three isostructural 3D frameworks, named IFP-11 (R = Cl), IFP-12 (R = Br), and IFP-13 (R = Et) (IFP = Imidazolate Framework Potsdam) based on a cobalt(II) center and the chelating linker 2-substituted imidazolate-4-amide-5-imidate. These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under microwave (MW)-assisted conditions in DMF. Structure determination of these IFPs was investigated by IR spectroscopy and a combination of powder X-ray diffraction (PXRD) with structure modeling. The structural models were initially built up from the single-crystal X-ray structure determination of IFP-5 (a cobalt center and 2-methylimidazolate-4-amide-5-imidate linker based framework) and were optimized by using density functional theory calculations. Substitution on position 2 of the linker (R = Cl, Br, and Et) in the isostructural IFP-11, -12, and -13 allowed variation of the potential pore window in 1D hexagonal channels (3.8 to 1.7 Å). The potential of the materials to undergo specific interactions with CO2 was measured by the isosteric heat of adsorption. Further, we resynthesized zinc based IFPs, namely IFP-1 (R = Me), IFP-2 (R = Cl), IFP-3 (R = Br), and IFP-4 (R = Et), and cobalt based IFP-5 under MW-assisted conditions with higher yield. The transition from a nucleation phase to the pure crystalline material of IFP-1 in MW-assisted synthesis depends on reaction time. IFP-1, -3, and -5, which are synthesized by MW-assisted conditions, showed an enhancement of N2 and CO2, compared to the analogous conventional electrical (CE) heating method based materials due to crystal defects.

5.
Phys Chem Chem Phys ; 17(2): 1332-8, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25425171

ABSTRACT

We present a comprehensive computational study of sp(3)-carbon allotropes based on the topologies proposed for zeolites. From ≈600,000 zeolite nets we identified six new allotropes, lying by at most 0.12 eV per atom above diamond. The analysis of cages in the allotropes has revealed close structural relations to diamond and lonsdaleite phases. Besides the energetic and mechanical stability of new allotropes, three of them show band gaps by ca. 1 eV larger than that of diamond, and therefore represent an interesting technological target as hard and transparent materials. A structural relation of new allotropes to continuous random networks is pointed out and possible engineering from diamond thin films and graphene is suggested.

6.
Adv Mater ; 35(2): e2207130, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36305045

ABSTRACT

Mesocrystals are a class of nanostructured material, where a multiple-length-scale structure is a prerequisite of many interesting phenomena. Resolving the mesocrystal structure is quite challenging due to their structuration on different length scales. The combination of small- and wide-angle X-ray scattering (SAXS and WAXS) techniques offers the possibility of non-destructively probing mesocrystalline structures simultaneously, over multiple length scales to reveal their microscopic structure. This work describes how high dynamical range of modern detectors sheds light on the weak features of scattering, significantly increasing the information content. The detailed analysis of X-ray diffraction (XRD) from the magnetite mesocrystals with different particle sizes and shapes is described, in tandem with electron microscopy. The revealed features provide valuable input to the models of mesocrystal growth and the choice of structural motif; the impact on magnetic properties is discussed.

7.
Chemistry ; 18(37): 11630-40, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-22865659

ABSTRACT

We report on a new series of isoreticular frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate (IFP-1-4, IFP = imidazolate framework Potsdam) that form one-dimensional, microporous hexagonal channels. Varying R in the 2-substitued linker (R = Me (IFP-1), Cl (IFP-2), Br (IFP-3), Et (IFP-4)) allowed the channel diameter (4.0-1.7 Å), the polarisability and functionality of the channel walls to be tuned. Frameworks IFP-2, IFP-3 and IFP-4 are isostructural to previously reported IFP-1. The structures of IFP-2 and IFP-3 were solved by X-ray crystallographic analyses. The structure of IFP-4 was determined by a combination of PXRD and structure modelling and was confirmed by IR spectroscopy and (1)H MAS and (13)C CP-MAS NMR spectroscopy. All IFPs showed high thermal stability (345-400 °C); IFP-1 and IFP-4 were stable in boiling water for 7 d. A detailed porosity analysis was performed on the basis of adsorption measurements by using various gases. The potential of the materials to undergo specific interactions with CO(2) was investigated by measuring the isosteric heats of adsorption. The capacity to adsorb CH(4) (at 298 K), CO(2) (at 298 K) and H(2) (at 77 K) at high pressure were also investigated. In situ IR spectroscopy showed that CO(2) is physisorbed on IFP-1-4 under dry conditions and that both CO(2) and H(2)O are physisorbed on IFP-1 under moist conditions.


Subject(s)
Amides/chemistry , Imidazoles/chemistry , Imidoesters/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Zinc/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Porosity , Surface Properties
8.
Chemistry ; 17(46): 13007-16, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-21956516

ABSTRACT

A combination of topological rules and quantum chemical calculations has facilitated the development of a rational metal-organic framework (MOF) synthetic strategy using the tritopic benzene-1,3,5-tribenzoate (btb) linker and a neutral cross-linker 4,4'-bipyridine (bipy). A series of new compounds, namely [M(2)(bipy)](3)(btb)(4) (DUT-23(M), M = Zn, Co, Cu, Ni), [Cu(2)(bisqui)(0.5)](3)(btb)(4) (DUT-24, bisqui = diethyl (R,S)-4,4'-biquinoline-3,3'-dicarboxylate), [Cu(2)(py)(1.5)(H(2)O)(0.5)](3)(btb)(4) (DUT-33, py = pyridine), and [Cu(2)(H(2)O)(2)](3)(btb)(4) (DUT-34), with high specific surface areas and pore volumes (up to 2.03 m(3) g(-1) for DUT-23(Co)) were synthesized. For DUT-23(Co), excess storage capacities were determined for methane (268 mg g(-1) at 100 bar and 298 K), hydrogen (74 mg g(-1) at 40 bar and 77 K), and n-butane (99 mg g(-1) at 293 K). DUT-34 is a non-cross-linked version of DUT-23 (non-interpenetrated pendant to MOF-14) that possesses open metal sites and can therefore be used as a catalyst. The accessibility of the pores in DUT-34 to potential substrate molecules was proven by liquid phase adsorption. By exchanging the N,N donor 4,4'-bipyridine with a substituted racemic biquinoline, DUT-24 was obtained. This opens a route to the synthesis of a chiral compound, which could be interesting for enantioselective separation.

9.
Nanoscale ; 13(25): 11299-11300, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34156046

ABSTRACT

Correction for 'Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging' by Jerome Carnis et al., Nanoscale, 2021, DOI: 10.1039/D1NR01806J.

10.
Nanoscale ; 13(23): 10425-10435, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34028473

ABSTRACT

Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected by structural heterogeneity. Here, we report the detailed structural characterization of a faceted mesocrystal grain self-assembled from 60 nm sized gold nanocubes. Using coherent X-ray diffraction imaging, we determined the structure of the mesocrystal with the resolution sufficient to resolve each gold nanoparticle. The reconstructed electron density of the gold mesocrystal reveals its intrinsic structural heterogeneity, including local deviations of lattice parameters, and the presence of internal defects. The strain distribution shows that the average superlattice obtained by angular X-ray cross-correlation analysis and the real, "multidomain" structure of a mesocrystal are very close to each other, with a deviation less than 10%. These results will provide an important impact to understanding the fundamental principles of structuring and self-assembly including ensuing properties of mesocrystals.

11.
Inorg Chem ; 49(10): 4440-6, 2010 May 17.
Article in English | MEDLINE | ID: mdl-20394370

ABSTRACT

A new chiral Metal-Organic Framework (MOF), named DUT-7, has been synthesized from enantiopure (S)-2,2'-spirobiindane-5,5'-dicarboxylic acid ((S)-H(2)L) and zinc nitrate. The framework of the compound has the composition Zn(4)O((S)-L)(3) as it is found for the IRMOF series, but in contrast to these MOFs, the crystal structure of DUT-7(RT) (RT: room temperature) which has to be assigned to the chiral space group P6(3)22, has a completely different topology. The Zn(4)O clusters are not coordinated in an octahedral fashion but show only C(3) symmetry and are arranged in a trigonal-prismatic manner. The framework is built of two interpenetrated nets with an acs topology related to each other by the 2-fold axes. DUT-7 is the first example of this rare framework topology constructed from Zn(4)O units. A reversible structural transformation was observed upon cooling during single crystal X-ray diffraction. The resulting crystal structure, denoted as DUT-7(LT) (LT: low temperature), is characterized by a Zn(4)O cluster not only coordinated by six linker moieties but also by two additional solvent molecules leading to an octahedral coordination of one of the zinc atoms of the cluster. This structure transformation leads to a tripled unit cell compared to DUT-7(RT) and a change of the space group to P6(5)22. The flexibility of the coordination of the metal atoms which has been observed for the first time points toward a catalytic activity of MOFs exhibiting metal atoms with a closed shell not only caused by defects in the crystal structure. The reaction of racemic 2,2'-spirobiindane-5,5'-dicarboxylic acid (rac-H(2)L) with zinc nitrate lead to a microcrystalline compound DUT-7(rac). DUT-7 and DUT-7(rac) have been characterized by X-ray powder diffraction, elemental and thermogravimetric analysis, and IR spectroscopy revealing the same framework composition for both compounds. The porosity of DUT-7 and DUT-7(rac) was proven by nitrogen and hydrogen physisorption measurements.

12.
Acta Crystallogr A Found Adv ; 76(Pt 5): 584-588, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32869756

ABSTRACT

The generating sets of {\bb Z}^4 have been enumerated which consist of integral four-dimensional vectors with components -1, 0, 1 and allow Cayley graphs without edge intersections in a straight-edge embedding in a four-dimensional Euclidean space. Owing to computational restrictions the valency of enumerated graphs has been fixed to 10. Up to isomorphism 58 graphs have been found and characterized by coordination sequences, shortest cycles and automorphism groups. To compute automorphism groups, a novel strategy is introduced that is based on determining vertex stabilizers from the automorphism group of a sufficiently large finite ball cut out from an infinite graph. Six exceptional, rather `dense' graphs have been identified which are locally isomorphic to a five-dimensional cubic lattice within a ball of radius 10. They could be built by either interconnecting interpenetrated three- or four-dimensional cubic lattices and therefore necessarily contain Hopf links between quadrangular cycles. As a consequence, a local combinatorial isomorphism does not extend to a local isotopy.

13.
Acta Crystallogr A Found Adv ; 76(Pt 3): 275-301, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32356780

ABSTRACT

Entangled embedded periodic nets and crystal frameworks are defined, along with their dimension type, homogeneity type, adjacency depth and periodic isotopy type. Periodic isotopy classifications are obtained for various families of embedded nets with small quotient graphs. The 25 periodic isotopy classes of depth-1 embedded nets with a single-vertex quotient graph are enumerated. Additionally, a classification is given of embeddings of n-fold copies of pcu with all connected components in a parallel orientation and n vertices in a repeat unit, as well as demonstrations of their maximal symmetry periodic isotopes. The methodology of linear graph knots on the flat 3-torus [0,1)3 is introduced. These graph knots, with linear edges, are spatial embeddings of the labelled quotient graphs of an embedded net which are associated with its periodicity bases.

14.
Acta Crystallogr A Found Adv ; 74(Pt 6): 616-629, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30378573

ABSTRACT

The mathematical conditions for the origin of long-range order or crystallinity in ideal crystals are one of the very fundamental problems of modern crystallography. It is widely believed that the (global) regularity of crystals is a consequence of `local order', in particular the repetition of local fragments, but the exact mathematical theory of this phenomenon is poorly known. In particular, most mathematical models for quasicrystals, for example Penrose tiling, have repetitive local fragments, but are not (globally) regular. The universal abstract models of any atomic arrangements are Delone sets, which are uniformly distributed discrete point sets in Euclidean d space. An ideal crystal is a regular or multi-regular system, that is, a Delone set, which is the orbit of a single point or finitely many points under a crystallographic group of isometries. The local theory of regular or multi-regular systems aims at finding sufficient local conditions for a Delone set X to be a regular or multi-regular system. One of the main goals is to estimate the regularity radius \hat{\rho}_d for Delone sets X in terms of the radius R of the largest `empty ball' for X. The celebrated `local criterion for regular systems' provides an upper bound for \hat{\rho_d} for any d. Better upper bounds are known for d ≤ 3. The present article establishes the lower bound \hat{\rho_d}\geq 2dR for all d, which is linear in d. The best previously known lower bound had been \hat{\rho}_d\geq 4R for d ≥ 2. The proof of the new lower bound is accomplished through explicit constructions of Delone sets with mutually equivalent (2dR - ℇ)-clusters, which are not regular systems. The two- and three-dimensional constructions are illustrated by examples. In addition to its fundamental importance, the obtained result is also relevant for the understanding of geometrical conditions of the formation of ordered and disordered arrangements in polytypic materials.

17.
Nanoscale ; 9(20): 6929-6936, 2017 May 25.
Article in English | MEDLINE | ID: mdl-28509924

ABSTRACT

Multilayered intercalation of 1-octanol into the structure of Brodie graphite oxide (B-GO) was studied as a function of temperature and pressure. Reversible phase transition with the addition/removal of one layer of 1-octanol was found at 265 K by means of X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The same transition was observed at ambient temperature upon a pressure increase above 0.6 GPa. This transition was interpreted as an incongruent melting of the low temperature/high pressure B-GO intercalated structure with five layers of 1-octanol parallel to GO sheets (L-solvate), resulting in the formation of a four-layered structure that is stable under ambient conditions (A-solvate). Vacuum heating allows the removal of 1-octanol from the A-solvate layer by layer, while distinct sets of (00l) reflections are observed for three-, two-, and one-layered solvate phases. Step by step removal of the 1-octanol layers results in changes of distance between graphene oxide planes by ∼4.5 Å. This experiment proved that both L- and A-solvates are structures with layers of 1-octanol parallel to GO planes. Unusual intercalation with up to five distinct layers of 1-octanol is remarkably different from the behaviour of small alcohol molecules (methanol and ethanol), which intercalate B-GO structure with only one layer under ambient conditions and a maximum of two layers at lower temperatures or higher pressures. The data presented in this study make it possible to rule out a change in the orientation of alcohol molecules from parallel to perpendicular to the GO planes, as suggested in the 1960s to explain larger expansion of the GO lattice due to swelling with larger alcohols.

18.
Acta Crystallogr A Found Adv ; 72(Pt 3): 366-75, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27126113

ABSTRACT

Using group-subgroup and group-supergroup relations, a general theoretical framework is developed to describe and derive interpenetrating 3-periodic nets. The generation of interpenetration patterns is readily accomplished by replicating a single net with a supergroup G of its space group H under the condition that site symmetries of vertices and edges are the same in both H and G. It is shown that interpenetrating nets cannot be mapped onto each other by mirror reflections because otherwise edge crossings would necessarily occur in the embedding. For the same reason any other rotation or roto-inversion axes from G \ H are not allowed to intersect vertices or edges of the nets. This property significantly narrows the set of supergroups to be included in the derivation of interpenetrating nets. A procedure is described based on the automorphism group of a Hopf ring net [Alexandrov et al. (2012). Acta Cryst. A68, 484-493] to determine maximal symmetries compatible with interpenetration patterns. The proposed approach is illustrated by examples of twofold interpenetrated utp, dia and pcu nets, as well as multiple copies of enantiomorphic quartz (qtz) networks. Some applications to polycatenated 2-periodic layers are also discussed.

20.
Chem Commun (Camb) ; 51(83): 15280-3, 2015 Oct 25.
Article in English | MEDLINE | ID: mdl-26335949

ABSTRACT

Using an optimized KOH activation procedure we prepared highly porous graphene scaffold materials with SSA values up to 3400 m(2) g(-1) and a pore volume up to 2.2 cm(3) g(-1), which are among the highest for carbon materials. Hydrogen uptake of activated graphene samples was evaluated in a broad temperature interval (77-296 K). After additional activation by hydrogen annealing the maximal excess H2 uptake of 7.5 wt% was obtained at 77 K. A hydrogen storage value as high as 4 wt% was observed already at 193 K (120 bar H2), a temperature of solid CO2, which can be easily maintained using common industrial refrigeration methods.

SELECTION OF CITATIONS
SEARCH DETAIL