Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
Add more filters

Publication year range
1.
Plant J ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331793

ABSTRACT

Plant adaptation from aquatic to terrestrial environments required modifications to cell wall structure and function to provide tolerance to new abiotic and biotic stressors. Here, we investigate the nature and function of red auronidin pigment accumulation in the cell wall of the liverwort Marchantia polymorpha. Transgenic plants with auronidin production either constitutive or absent were analysed for their cell wall properties, including fractionation of polysaccharide and phenolic components. While small amounts of auronidin and other flavonoids were loosely associated with the cell wall, the majority of the pigments were tightly associated, similar to what is observed in angiosperms for polyphenolics such as lignin. No evidence of covalent binding to a polysaccharide component was found: we propose auronidin is present in the wall as a physically entrapped large molecular weight polymer. The results suggested auronidin is a dual function molecule that can both screen excess light and increase wall strength, hydrophobicity and resistance to enzymatic degradation by pathogens. Thus, liverworts have expanded the core phenylpropanoid toolkit that was present in the ancestor of all land plants, to deliver a lineage-specific solution to some of the environmental stresses faced from a terrestrial lifestyle.

2.
Mol Microbiol ; 121(6): 1245-1261, 2024 06.
Article in English | MEDLINE | ID: mdl-38750617

ABSTRACT

Linear, unbranched (1,3;1,4)-ß-glucans (mixed-linkage glucans or MLGs) are commonly found in the cell walls of grasses, but have also been detected in basal land plants, algae, fungi and bacteria. Here we show that two family GT2 glycosyltransferases from the Gram-positive bacterium Sarcina ventriculi are capable of synthesizing MLGs. Immunotransmission electron microscopy demonstrates that MLG is secreted as an exopolysaccharide, where it may play a role in organizing individual cells into packets that are characteristic of Sarcina species. Heterologous expression of these two genes shows that they are capable of producing MLGs in planta, including an MLG that is chemically identical to the MLG secreted from S. ventriculi cells but which has regularly spaced (1,3)-ß-linkages in a structure not reported previously for MLGs. The tandemly arranged, paralogous pair of genes are designated SvBmlgs1 and SvBmlgs2. The data indicate that MLG synthases have evolved different enzymic mechanisms for the incorporation of (1,3)-ß- and (1,4)-ß-glucosyl residues into a single polysaccharide chain. Amino acid variants associated with the evolutionary switch from (1,4)-ß-glucan (cellulose) to MLG synthesis have been identified in the active site regions of the enzymes. The presence of MLG synthesis in bacteria could prove valuable for large-scale production of MLG for medical, food and beverage applications.


Subject(s)
Glycosyltransferases , beta-Glucans , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , beta-Glucans/metabolism , Cell Wall/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism
3.
Plant Physiol ; 192(1): 119-132, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36797772

ABSTRACT

The role of glycoproteins as key cell surface molecules during development and stress is well established; yet, the relationship between their structural features and functional mechanisms is poorly defined. FASCICLIN-LIKE ARABINOGALACTAN PROTEINs (FLAs), which impact plant growth and development, are an excellent example of a glycoprotein family with a complex multidomain structure. FLAs combine globular fasciclin-like (FAS1) domains with regions that are intrinsically disordered and contain glycomotifs for directing the addition of O-linked arabinogalactan (AG) glycans. Additional posttranslational modifications on FLAs include N-linked glycans in the FAS1 domains, a cleaved signal peptide at the N terminus, and often a glycosylphosphatidylinositol (GPI) anchor signal sequence at the C terminus. The roles of glycosylation, the GPI anchor, and FAS1 domain functions in the polysaccharide-rich extracellular matrix of plants remain unclear, as do the relationships between them. In this study, we examined sequence-structure-function relationships of Arabidopsis (Arabidopsis thaliana) FLA11, demonstrated to have roles in secondary cell wall (SCW) development, by introducing domain mutations and functional specialization through domain swaps with FLA3 and FLA12. We identified FAS1 domains as essential for FLA function, differentiating FLA11/FLA12, with roles in SCW development, from FLA3, specific to flowers and involved in pollen development. The GPI anchor and AG glycosylation co-regulate the cell surface location and release of FLAs into cell walls. The AG glycomotif sequence closest to the GPI anchor (AG2) is a major feature differentiating FLA11 from FLA12. The results of our study show that the multidomain structure of different FLAs influences their subcellular location and biological functions during plant development.


Subject(s)
Arabidopsis , Plant Proteins , Plant Proteins/metabolism , Mucoproteins/genetics , Mucoproteins/metabolism , Arabidopsis/metabolism , Glycoproteins/metabolism , Polysaccharides/metabolism
4.
Plant Physiol ; 194(1): 168-189, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37862163

ABSTRACT

Oat (Avena sativa) is a cereal crop whose grains are rich in (1,3;1,4)-ß-D-glucan (mixed-linkage glucan or MLG), a soluble dietary fiber. In our study, we analyzed oat endosperm development in 2 Canadian varieties with differing MLG content and nutritional value. We confirmed that oat undergoes a nuclear type of endosperm development but with a shorter cellularization phase than barley (Hordeum vulgare). Callose and cellulose were the first polysaccharides to be detected in the early anticlinal cell walls at 11 days postemergence (DPE) of the panicle. Other polysaccharides such as heteromannan and homogalacturonan were deposited early in cellularization around 12 DPE after the first periclinal walls are laid down. In contrast to barley, heteroxylan deposition coincided with completion of cellularization and was detected from 14 DPE but was only detectable after demasking. Notably, MLG was the last polysaccharide to be laid down at 18 DPE within the differentiation phase, rather than during cellularization. In addition, differences in the spatiotemporal patterning of MLG were also observed between the 2 varieties. The lower MLG-containing cultivar AC Morgan (3.5% w/w groats) was marked by the presence of a discontinuous pattern of MLG labeling, while labeling in the same walls in CDC Morrison (5.6% w/w groats) was mostly even and continuous. RNA-sequencing analysis revealed higher transcript levels of multiple MLG biosynthetic cellulose synthase-like F (CSLF) and CSLH genes during grain development in CDC Morrison compared with AC Morgan that likely contributes to the increased abundance of MLG at maturity in CDC Morrison. CDC Morrison was also observed to have smaller endosperm cells with thicker walls than AC Morgan from cellularization onwards, suggesting the processes controlling cell size and shape are established early in development. This study has highlighted that the molecular processes influencing MLG content and deposition are more complex than previously imagined.


Subject(s)
Endosperm , Hordeum , Endosperm/metabolism , Avena , Edible Grain/genetics , Edible Grain/metabolism , Canada , Polysaccharides/metabolism , Glucans/metabolism , Hordeum/genetics , Hordeum/metabolism , Cell Wall/metabolism
5.
J Exp Bot ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225376

ABSTRACT

Cannabis sativa L. is one of the oldest domesticated crops. Hemp-type cultivars, which predominantly produce non-intoxicating cannabidiol (CBD), have been selected for their fast growth, seed, and fibre production, while drug-type chemovars were bred for high accumulation of tetrahydrocannabinol (THC). We investigated how the generation of CBD-dominant chemovars by introgression of hemp- into drug-type Cannabis impacted plant performance. The THC-dominant chemovar showed superior sink strength, higher flower biomass and demand-driven control of nutrient uptake. By contrast, the CBD-dominant chemovar hyperaccumulated phosphate in sink organs leading to reduced carbon and nitrogen assimilation in leaves, which limited flower biomass and cannabinoid yield. RNA-seq analyses determined organ- and chemovar-specific differences in expression of genes associated with nitrate and phosphate homeostasis as well as growth-regulating transcription factors that were correlated with measured traits. Among these were genes positively selected for during Cannabis domestication encoding an inhibitor of the phosphate starvation response SPX DOMAIN GENE3, nitrate reductase and two nitrate transporters. Altered nutrient sensing, acquisition or distribution are likely a consequence of adaption to growth on marginal, low-nutrient input lands in hemp. Our data provide evidence that such ancestral traits may become detrimental for female flower development and consequently overall CBD yield in protected cropping environments.

6.
Physiol Plant ; 176(5): e14520, 2024.
Article in English | MEDLINE | ID: mdl-39351613

ABSTRACT

Adhesion and consequent adoption of a sessile habit is a common feature of many green algae and was likely a key mechanism in terrestrialization by an ancient zygnematophyte (i.e., the Zygnematophyceae, the group of algae ancestral to land plants). Penium margaritaceum is a unicellular zygnematophyte that exhibits a multistep adhesion mechanism, which leads to the establishment of the sessile habit. Based on microscopic and immunological data, a dense aggregate of fibrils containing arabinogalactan-protein (AGP)-like components covers the cell surface and is responsible for initial adhesion. The AGP-like fibrils are 20 µm in diameter and possess chemical profiles similar to land plant AGPs. The fibrils attach to the inner cell wall layers and are very likely connected to the plasma membrane as glycophosphatidylinositol (GPI) lipid-anchored proteins, as they are susceptible to phospholipase C treatment. The presence of GPI-anchored AGPs in Penium is further supported by the identification of putative Penium homologs of land plant AGP genes responsible for GPI-anchor synthesis. After adhesion, cells secrete a complex heteropolysaccharide-containing extracellular polymeric substance (EPS) that facilitates gliding motility and the formation of cell aggregates. Fucoidan-like polymers, major components of brown algal CWs, are a major constituent of both the EPS and the adhesive layer of the CW and their role in the adhesion process is still to be examined.


Subject(s)
Cell Adhesion , Extracellular Matrix , Mucoproteins , Plant Proteins , Extracellular Matrix/metabolism , Mucoproteins/metabolism , Mucoproteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Cell Adhesion/physiology , Cell Wall/metabolism , Chlorophyta/metabolism , Chlorophyta/genetics , Chlorophyta/physiology
7.
New Phytol ; 233(4): 1750-1767, 2022 02.
Article in English | MEDLINE | ID: mdl-34862967

ABSTRACT

Secondary cell walls (SCWs) in stem xylem vessel and fibre cells enable plants to withstand the enormous compressive forces associated with upright growth. It remains unclear if xylem vessel and fibre cells can directly sense mechanical stimuli and modify their SCW during development. We provide evidence that Arabidopsis SCW-specific Fasciclin-Like Arabinogalactan-proteins 11 (FLA11) and 12 (FLA12) are possible cell surface sensors regulating SCW development in response to mechanical stimuli. Plants overexpressing FLA11 (OE-FLA11) showed earlier SCW development compared to the wild-type (WT) and altered SCW properties that phenocopy WT plants under compression stress. By contrast, OE-FLA12 stems showed higher cellulose content compared to WT plants, similar to plants experiencing tensile stress. fla11, OE-FLA11, fla12, and OE-FLA12 plants showed altered SCW responses to mechanical stress compared to the WT. Quantitative polymerase chain reaction (qPCR) and RNA-seq analysis revealed the up-regulation of genes and pathways involved in stress responses and SCW synthesis and regulation. Analysis of OE-FLA11 nst1 nst3 plants suggests that FLA11 regulation of SCWs is reliant on classical transcriptional networks. Our data support the involvement of FLA11 and FLA12 in SCW sensing complexes to fine-tune both the initiation of SCW development and the balance of lignin and cellulose synthesis/deposition in SCWs during development and in response to mechanical stimuli.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant , Lignin/metabolism , Stress, Mechanical
8.
Plant J ; 104(4): 1009-1022, 2020 11.
Article in English | MEDLINE | ID: mdl-32890421

ABSTRACT

Barley (Hordeum vulgare L) grain is comparatively rich in (1,3;1,4)-ß-glucan, a source of fermentable dietary fibre that protects against various human health conditions. However, low grain (1,3;1,4)-ß-glucan content is preferred for brewing and distilling. We took a reverse genetics approach, using CRISPR/Cas9 to generate mutations in members of the Cellulose synthase-like (Csl) gene superfamily that encode known (HvCslF6 and HvCslH1) and putative (HvCslF3 and HvCslF9) (1,3;1,4)-ß-glucan synthases. Resultant mutations ranged from single amino acid (aa) substitutions to frameshift mutations causing premature stop codons, and led to specific differences in grain morphology, composition and (1,3;1,4)-ß-glucan content. (1,3;1,4)-ß-Glucan was absent in the grain of cslf6 knockout lines, whereas cslf9 knockout lines had similar (1,3;1,4)-ß-glucan content to wild-type (WT). However, cslf9 mutants showed changes in the abundance of other cell-wall-related monosaccharides compared with WT. Thousand grain weight (TGW), grain length, width and surface area were altered in cslf6 knockouts, and to a lesser extent TGW in cslf9 knockouts. cslf3 and cslh1 mutants had no effect on grain (1,3;1,4)-ß-glucan content. Our data indicate that multiple members of the CslF/H family fulfil important functions during grain development but, with the exception of HvCslF6, do not impact the abundance of (1,3;1,4)-ß-glucan in mature grain.


Subject(s)
Hordeum/enzymology , Plant Proteins/metabolism , beta-Glucans/metabolism , Cell Wall/metabolism , Edible Grain , Gene Editing , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Hordeum/genetics , Mutagenesis, Site-Directed , Mutation , Plant Proteins/genetics , Plants, Genetically Modified , Polysaccharides/metabolism
9.
Plant J ; 104(1): 252-267, 2020 09.
Article in English | MEDLINE | ID: mdl-32662159

ABSTRACT

Rhamnogalacturonan-II (RG-II) is structurally the most complex glycan in higher plants, containing 13 different sugars and 21 distinct glycosidic linkages. Two monomeric RG-II molecules can form an RG-II-borate diester dimer through the two apiosyl (Api) residues of side chain A to regulate cross-linking of pectin in the cell wall. But the relationship of Api biosynthesis and RG-II dimer is still unclear. In this study we investigated the two homologous UDP-D-apiose/UDP-D-xylose synthases (AXSs) in Arabidopsis thaliana that synthesize UDP-D-apiose (UDP-Api). Both AXSs are ubiquitously expressed, while AXS2 has higher overall expression than AXS1 in the tissues analyzed. The homozygous axs double mutant is lethal, while heterozygous axs1/+ axs2 and axs1 axs2/+ mutants display intermediate phenotypes. The axs1/+ axs2 mutant plants are unable to set seed and die. By contrast, the axs1 axs2/+ mutant plants exhibit loss of shoot and root apical dominance. UDP-Api content in axs1 axs2/+ mutants is decreased by 83%. The cell wall of axs1 axs2/+ mutant plants is thicker and contains less RG-II-borate complex than wild-type Col-0 plants. Taken together, these results provide direct evidence of the importance of AXSs for UDP-Api and RG-II-borate complex formation in plant growth and development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Pectins/metabolism , Uridine Diphosphate Sugars/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/physiology , Pollen/metabolism
10.
Mol Biol Evol ; 37(8): 2155-2172, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32359163

ABSTRACT

Approaches for studying the evolution of globular proteins are now well established yet are unsuitable for disordered sequences. Our understanding of the evolution of proteins containing disordered regions therefore lags that of globular proteins, limiting our capacity to estimate their evolutionary history, classify paralogs, and identify potential sequence-function relationships. Here, we overcome these limitations by using new analytical approaches that project representations of sequence space to dissect the evolution of proteins with both ordered and disordered regions, and the correlated changes between these. We use the fasciclin-like arabinogalactan proteins (FLAs) as a model family, since they contain a variable number of globular fasciclin domains as well as several distinct types of disordered regions: proline (Pro)-rich arabinogalactan (AG) regions and longer Pro-depleted regions. Sequence space projections of fasciclin domains from 2019 FLAs from 78 species identified distinct clusters corresponding to different types of fasciclin domains. Clusters can be similarly identified in the seemingly random Pro-rich AG and Pro-depleted disordered regions. Sequence features of the globular and disordered regions clearly correlate with one another, implying coevolution of these distinct regions, as well as with the N-linked and O-linked glycosylation motifs. We reconstruct the overall evolutionary history of the FLAs, annotated with the changing domain architectures, glycosylation motifs, number and length of AG regions, and disordered region sequence features. Mapping these features onto the functionally characterized FLAs therefore enables their sequence-function relationships to be interrogated. These findings will inform research on the abundant disordered regions in protein families from all kingdoms of life.


Subject(s)
Evolution, Molecular , Intrinsically Disordered Proteins/genetics , Mucoproteins/genetics , Multigene Family , Plants/genetics , Plant Proteins/genetics , Protein Domains
11.
New Phytol ; 230(1): 73-89, 2021 04.
Article in English | MEDLINE | ID: mdl-33283274

ABSTRACT

Cannabis (Cannabis sativa L.) is one of the oldest cultivated plants purported to have unique medicinal properties. However, scientific research of cannabis has been restricted by the Single Convention on Narcotic Drugs of 1961, an international treaty that prohibits the production and supply of narcotic drugs except under license. Legislation governing cannabis cultivation for research, medicinal and even recreational purposes has been relaxed recently in certain jurisdictions. As a result, there is now potential to accelerate cultivar development of this multi-use and potentially medically useful plant species by application of modern genomics technologies. Whilst genomics has been pivotal to our understanding of the basic biology and molecular mechanisms controlling key traits in several crop species, much work is needed for cannabis. In this review we provide a comprehensive summary of key cannabis genomics resources and their applications. We also discuss prospective applications of existing and emerging genomics technologies for accelerating the genetic improvement of cannabis.


Subject(s)
Cannabis , Cannabis/genetics , Genomics , Prospective Studies
12.
Plant Cell Environ ; 44(3): 915-930, 2021 03.
Article in English | MEDLINE | ID: mdl-33190295

ABSTRACT

Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze-thaw cycle. Many plant species increase their freezing tolerance during exposure to low, non-freezing temperatures, a process termed cold acclimation. In addition, exposure to mild freezing temperatures after cold acclimation evokes a further increase in freezing tolerance (sub-zero acclimation). Previous transcriptome and proteome analyses indicate that cell wall remodelling may be particularly important for sub-zero acclimation. In the present study, we used a combination of immunohistochemical, chemical and spectroscopic analyses to characterize the cell walls of Arabidopsis thaliana and characterized a mutant in the XTH19 gene, encoding a xyloglucan endotransglucosylase/hydrolase (XTH). The mutant showed reduced freezing tolerance after both cold and sub-zero acclimation, compared to the Col-0 wild type, which was associated with differences in cell wall composition and structure. Most strikingly, immunohistochemistry in combination with 3D reconstruction of centres of rosette indicated that epitopes of the xyloglucan-specific antibody LM25 were highly abundant in the vasculature of Col-0 plants after sub-zero acclimation but absent in the XTH19 mutant. Taken together, our data shed new light on the potential roles of cell wall remodelling for the increased freezing tolerance observed after low temperature acclimation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Wall/physiology , Glycosyltransferases/metabolism , Acclimatization , Arabidopsis/enzymology , Arabidopsis/physiology , Arabidopsis Proteins/physiology , Cell Wall/metabolism , Freezing , Glycosyltransferases/physiology , Monosaccharides/metabolism , Polysaccharides/metabolism , Spectroscopy, Fourier Transform Infrared
13.
Plant Cell ; 30(10): 2512-2528, 2018 10.
Article in English | MEDLINE | ID: mdl-30242037

ABSTRACT

Secondary cell walls (SCWs) are formed in some specific types of plant cells, providing plants with mechanical strength. During plant growth and development, formation of secondary cell walls is regulated by various developmental and environmental signals. The underlying molecular mechanisms are poorly understood. In this study, we analyzed the blue light receptor cryptochrome1 (cry1) mutant of Arabidopsis thaliana for its SCW phenotypes. During inflorescence stem growth, SCW thickening in the vasculature was significantly affected by blue light. cry1 plants displayed a decline of SCW thickening in fiber cells, while CRY1 overexpression led to enhanced SCW formation. Transcriptome analysis indicated that the reduced SCW thickening was associated with repression of the NST1-directed transcription regulatory networks. Further analyses revealed that the expression of MYC2/MYC4 that is induced by blue light activates the transcriptional network underlying SCW thickening. The activation is caused by direct binding of MYC2/MYC4 to the NST1 promoter. This study demonstrates that SCW thickening in fiber cells is regulated by a blue light signal that is mediated through MYC2/MYC4 activation of NST1-directed SCW formation in Arabidopsis.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Wall/metabolism , Trans-Activators/metabolism , Transcription Factors/genetics , Arabidopsis/cytology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cryptochromes/genetics , Cryptochromes/metabolism , Gene Expression Regulation, Plant , Gene Regulatory Networks , Light , Mutation , Plant Cells/physiology , Plants, Genetically Modified , Promoter Regions, Genetic , Trans-Activators/genetics , Transcription Factors/metabolism
14.
Plant Cell ; 30(6): 1293-1308, 2018 06.
Article in English | MEDLINE | ID: mdl-29674386

ABSTRACT

Mixed-linkage (1,3;1,4)-ß-glucan (MLG), an abundant cell wall polysaccharide in the Poaceae, has been detected in ascomycetes, algae, and seedless vascular plants, but not in eudicots. Although MLG has not been reported in bryophytes, a predicted glycosyltransferase from the moss Physcomitrella patens (Pp3c12_24670) is similar to a bona fide ascomycete MLG synthase. We tested whether Pp3c12_24670 encodes an MLG synthase by expressing it in wild tobacco (Nicotiana benthamiana) and testing for release of diagnostic oligosaccharides from the cell walls by either lichenase or (1,4)-ß-glucan endohydrolase. Lichenase, an MLG-specific endohydrolase, showed no activity against cell walls from transformed N. benthamiana, but (1,4)-ß-glucan endohydrolase released oligosaccharides that were distinct from oligosaccharides released from MLG by this enzyme. Further analysis revealed that these oligosaccharides were derived from a novel unbranched, unsubstituted arabinoglucan (AGlc) polysaccharide. We identified sequences similar to the P. patens AGlc synthase from algae, bryophytes, lycophytes, and monilophytes, raising the possibility that other early divergent plants synthesize AGlc. Similarity of P. patens AGlc synthase to MLG synthases from ascomycetes, but not those from Poaceae, suggests that AGlc and MLG have a common evolutionary history that includes loss in seed plants, followed by a more recent independent origin of MLG within the monocots.


Subject(s)
Bryopsida/metabolism , Cell Wall/metabolism , Glucans/metabolism , Glycosyltransferases/metabolism
15.
J Phycol ; 57(6): 1805-1809, 2021 12.
Article in English | MEDLINE | ID: mdl-34491587

ABSTRACT

Chromerids are a group of alveolates, found in corals, that show peculiar morphological and genomic features. These organisms are evolutionary placed in-between symbiotic dinoflagellates and parasitic apicomplexans. There are two known species of chromerids: Chromera velia and Vitrella brassicaformis. Here, the biochemical composition of the C. velia cell wall was analyzed. Several polysaccharides adorn this structure, with glucose being the most abundant monosaccharide (approx. 80%) and predominantly 4-linked (approx. 60%), suggesting that the chromerids cell wall is mostly cellulosic. The presence of cellulose was cytochemically confirmed with calcofluor white staining of the algal cell. The remaining wall polysaccharides, assuming structures are similar to those of higher plants, are indicative of a mixture of galactans, xyloglucans, heteroxylans, and heteromannans. The present work provides, for the first time, insights into the outermost layers of the photosynthetic alveolate C. velia.


Subject(s)
Alveolata , Cell Wall , Photosynthesis , Phylogeny , Polysaccharides
16.
Int J Mol Sci ; 22(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572987

ABSTRACT

Glycosyltransferases (GTs) catalyze the synthesis of glycosidic linkages and are essential in the biosynthesis of glycans, glycoconjugates (glycolipids and glycoproteins), and glycosides. Plant genomes generally encode many more GTs than animal genomes due to the synthesis of a cell wall and a wide variety of glycosylated secondary metabolites. The Arabidopsis thaliana genome is predicted to encode over 573 GTs that are currently classified into 42 diverse families. The biochemical functions of most of these GTs are still unknown. In this study, we updated the JBEI Arabidopsis GT clone collection by cloning an additional 105 GT cDNAs, 508 in total (89%), into Gateway-compatible vectors for downstream characterization. We further established a functional analysis pipeline using transient expression in tobacco (Nicotiana benthamiana) followed by enzymatic assays, fractionation of enzymatic products by reversed-phase HPLC (RP-HPLC) and characterization by mass spectrometry (MS). Using the GT14 family as an exemplar, we outline a strategy for identifying effective substrates of GT enzymes. By addition of UDP-GlcA as donor and the synthetic acceptors galactose-nitrobenzodiazole (Gal-NBD), ß-1,6-galactotetraose (ß-1,6-Gal4) and ß-1,3-galactopentose (ß-1,3-Gal5) to microsomes expressing individual GT14 enzymes, we verified the ß-glucuronosyltransferase (GlcAT) activity of three members of this family (AtGlcAT14A, B, and E). In addition, a new family member (AT4G27480, 248) was shown to possess significantly higher activity than other GT14 enzymes. Our data indicate a likely role in arabinogalactan-protein (AGP) biosynthesis for these GT14 members. Together, the updated Arabidopsis GT clone collection and the biochemical analysis pipeline present an efficient means to identify and characterize novel GT catalytic activities.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Glycosyltransferases/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Wall/genetics , Cell Wall/metabolism , Genome, Plant , Glycosyltransferases/metabolism , Mucoproteins/genetics , Mucoproteins/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Substrate Specificity
17.
Mol Cell Proteomics ; 17(3): 413-421, 2018 03.
Article in English | MEDLINE | ID: mdl-29237727

ABSTRACT

N-glycosylation is one of the most common protein post-translational modifications in eukaryotes and has a relatively conserved core structure between fungi, animals and plants. In plants, the biosynthesis of N-glycans has been extensively studied with all the major biosynthetic enzymes characterized. However, few studies have applied advanced mass spectrometry to profile intact plant N-glycopeptides. In this study, we use hydrophilic enrichment, high-resolution tandem mass spectrometry with complementary and triggered fragmentation to profile Arabidopsis N-glycopeptides from microsomal membranes of aerial tissues. A total of 492 N-glycosites were identified from 324 Arabidopsis proteins with extensive N-glycan structural heterogeneity revealed through 1110 N-glycopeptides. To demonstrate the precision of the approach, we also profiled N-glycopeptides from the mutant (xylt) of ß-1,2-xylosyltransferase, an enzyme in the N-glycan biosynthetic pathway. This analysis represents the most comprehensive and unbiased collection of Arabidopsis N-glycopeptides revealing an unsurpassed level of detail on the micro-heterogeneity present in N-glycoproteins of Arabidopsis. Data are available via ProteomeXchange with identifier PXD006270.


Subject(s)
Arabidopsis Proteins/chemistry , Glycopeptides/metabolism , Glycoproteins/chemistry , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Glycoproteins/metabolism , Polysaccharides/metabolism
18.
Int J Mol Sci ; 21(22)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238539

ABSTRACT

Metal toxicity is a common problem in crop species worldwide. Some metals are naturally toxic, whereas others such as manganese (Mn) are essential micro-nutrients for plant growth but can become toxic when in excess. Changes in the composition of the xylem sap, which is the main pathway for ion transport within the plant, is therefore vital to understanding the plant's response(s) to metal toxicity. In this study we have assessed the effects of exposure of tomato roots to excess Mn on the protein profile of the xylem sap, using a shotgun proteomics approach. Plants were grown in nutrient solution using 4.6 and 300 µM MnCl2 as control and excess Mn treatments, respectively. This approach yielded 668 proteins reliably identified and quantified. Excess Mn caused statistically significant (at p ≤ 0.05) and biologically relevant changes in relative abundance (≥2-fold increases or ≥50% decreases) in 322 proteins, with 82% of them predicted to be secretory using three different prediction tools, with more decreasing than increasing (181 and 82, respectively), suggesting that this metal stress causes an overall deactivation of metabolic pathways. Processes most affected by excess Mn were in the oxido-reductase, polysaccharide and protein metabolism classes. Excess Mn induced changes in hydrolases and peroxidases involved in cell wall degradation and lignin formation, respectively, consistent with the existence of alterations in the cell wall. Protein turnover was also affected, as indicated by the decrease in proteolytic enzymes and protein synthesis-related proteins. Excess Mn modified the redox environment of the xylem sap, with changes in the abundance of oxido-reductase and defense protein classes indicating a stress scenario. Finally, results indicate that excess Mn decreased the amounts of proteins associated with several signaling pathways, including fasciclin-like arabinogalactan-proteins and lipids, as well as proteases, which may be involved in the release of signaling peptides and protein maturation. The comparison of the proteins changing in abundance in xylem sap and roots indicate the existence of tissue-specific and systemic responses to excess Mn. Data are available via ProteomeXchange with identifier PXD021973.


Subject(s)
Manganese/metabolism , Mucoproteins/genetics , Solanum lycopersicum/genetics , Xylem/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Wall/genetics , Cell Wall/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Proteome/genetics , Proteomics , Transcription Factors/genetics , Xylem/genetics
19.
Plant Physiol ; 194(1): 1-4, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37819051

Subject(s)
Cell Wall , Plant Cells
20.
Plant J ; 89(5): 957-971, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27888523

ABSTRACT

Arabinogalactan proteins (AGPs) are highly glycosylated proteins that play pivotal roles in diverse developmental processes in plants. Type-II AG glycans, mostly O-linked to the hydroxyproline residues of the protein backbone, account for up to 95% w/w of the AGP, but their functions are still largely unclear. Cotton fibers are extremely elongated single-cell trichomes on the seed epidermis; however, little is known of the molecular basis governing the regulation of fiber cell development. Here, we characterized the role of a CAZy glycosyltransferase 31 (GT31) family member, GhGalT1, in cotton fiber development. The fiber length of the transgenic cotton overexpressing GhGalT1 was shorter than that of the wild type, whereas in the GhGalT1-silenced lines there was a notable increase in fiber length compared with wild type. The carbohydrate moieties of AGPs were altered in fibers of GhGalT1 transgenic cotton. The galactose: arabinose ratio of AG glycans was higher in GhGalT1 overexpression fibers, but was lower in GhGalT1-silenced lines, compared with that in the wild type. Overexpression of GhGalT1 upregulates transcript levels of a broad range of cell wall-related genes, especially the fasciclin-like AGP (FLA) backbone genes. An enzyme activity assay demonstrated that GhGalT1 is a ß-1,3-galactosyltransferase (ß-1,3-GalT) involved in biosynthesis of the ß-1,3-galactan backbone of the type-II AG glycans of AGPs. We also show that GhGalT1 can form homo- and heterodimers with other cotton GT31 family members to facilitate AG glycan assembly of AGPs. Thus, our data demonstrate that GhGalT1 influences cotton fiber development via controlling the glycosylation of AGPs, especially FLAs.


Subject(s)
Galactosyltransferases/metabolism , Gossypium/enzymology , Plant Proteins/metabolism , Cell Wall/metabolism , Cotton Fiber , Galactosyltransferases/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Gossypium/genetics , Gossypium/metabolism , Mucoproteins/genetics , Mucoproteins/metabolism , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL